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A B S T R A C T 

The goal of this analytical review paper is for discussing the relationship 
between various types of regression analysis methods whose output were 
sufficiently analyzed using R programming. The regression analysis is 
calculated with three different case studies of different datasets for 
explaining linear and multiple regressions. Similarly, polynomial regression 
analysis is calculated with 2955 observation and 8 attributes of Florida date 
set whose residual standard error is calculated with 11520 on 2949 degrees 
of freedom, multiple R-squared is 0.07828, the adjusted R-squared is 0.07672 
and F-statists is 50.09 on 5. Likewise, the quintal regression analysis is 
carried out through binary data sets of 20 observations of 4 attributes 
whose, AIC value is fit between two or more models at 26 percentages and 75 
percent accuracy. The primary purpose of this paper is to explain the 
relationship of linear, multiple, quantile and polynomial regression models to 
achieve final conclusion with different data sets. Therefore, this paper 
presents easiest way of fundamental types of regression analysis commands 
and R programming strengths for of data analysis. 
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1.INTRODUCTION 
 
Regression analysis is a statistical process that allows you to 
investigate the linear relationship between the search 
variables is widely used for data set research predictions. 
The data analysis process always requires data analysis in 
modern data science (Manyika, 2011). Linear regression 
simply summarizes the association of related variables 
(Fiona, 2018). For example, sales and relationships with the 
company, sales records depend on factors in simple words, 
regression analysis is used to model the relationship 
between dependent and independent variables in the 
research field. However, the researcher can make 
independent decisions and employees accordingly. The 
independent variable is labeled as variable X, and the 
variable is the variable Y, which can be displayed on a graph, 
with X and Y independent variable (Astrid Schneider, 2010). 
X and Y can be expressed algebraically as Y = a + bX, where Y 
interception is called, and it is the slope of the regression line 
that determines the relationship between the search data. 
Likewise, the slope line refers to the slope of the line, as the 
line rises or falls sharply. The linear regression prediction 
model can be applied to individual or multiple independent 
or dependent variables. It is assumed that the relationship 

between these variables is of a uniform nature. The linear 
regression equation for multiple Y = B2X2 + B3X3 + B1 + ... + 
€ BK, where y is the dependent variable to be estimated, and 
X is the independent variable and ε is the error term. Β are 
the regression coefficients. Although, every regression has 
some assumptions that we must satisfy before performing 
the analysis. B1 is the term of the coefficient that is used to 
calculate the proportion of the independent variable. 
Therefore, it is that changing a unit into an independent 
variable decreases the value of the dependent variable if all 
other factors are constant. Regression analysis predicts the 
value of a variable based on one or more independent 
variables. The coefficient explains the impact of changes in 
the independent variable in the dependent variable. 
Regression analysis is widely used for prediction. 
Multivariate mode in which there are more than two 
variables involved, but there were two other sub-categories, 
for example linear and non-linear models of each type. In the 
linear model, the line is inserted into a line that has two 
simpler and multiple models. The model is known as a 
univariate multiple model. For the other variable, which is 
variable for the other, it is predictive of the variable. The 
simple linear regression line is included in the group of data 
represented. The distance from the average gives the 
residual value that is the discrepancy between the real 



CENTRAL ASIAN JOURNAL OF MATHEMATICAL THEORY AND COMPUTER SCIENCES       Vol: 01 Issue: 01 | Sep 2020      
 

© 2020, CAJMTCS       |     CENTRAL ASIAN STUDIES   www.centralasianstudies.org                                                    |     2 

 

values and the predicates. Therefore, the procedure for 
finding the best solution is called the least squares method. 
The linear regression model represents an independent 
variable. After having built the model, it is foreseen by 
modifying the independent coefficient of the model. 
However, there was some previous hypothesis that the 
predictive variable is not random; the error term is random 
due to the fact that the data must be independent of each 
other. Likewise, the coefficient of determination is a measure 
of the goodness of adaptation. When R2 = 0 means that there 
is no relation, if R2 = -ve there is a relation -ve the same way 
when R2 is + ve there is a positive relation. Therefore, the R2 
value can be explained, as the model explains the data and 
the percentage model. Differences in terms or residues. It 
assumed the houses of fair R2 is 0.75, this means 75% of the 
variation in the values of the dependent variable explained 
by the model and the remaining 25% is not explained or 
residual error conditions. In a linear expression, sometimes 
the dependent variable is explained by a single variable. 
Multiple regressions, which attempts to explain the variable 
using more than one independent variable. Multiple 
regressions may be linear and non-linear (Blokhin, 2018).  
Polynomial regression is a technique for regulating a non-
linear equation using a polynomial relationship of an 
independent variable. The polynomial relationship of 
dependent and independent variable should be in nonlinear. 
Polynomial regression is one of several line methods as:  f (x) 
= c0 + c1 + c2 x 2 …cn xn where n is the degree of a 
polynomial and c is a set of regression coefficients which 
creates unnecessary additional features of fitting large data 
sets. Polynomial models are an excellent tool for determining 
input factors for response variables. A second order 
quadratic polynomial model for two explanatory variables 
has the form of the following equation as : Y = α0 + α1x1+ 
α2x2 + α11x21+ α22x22 α12x1x2+ ε. Generally polynomial 
regression transforms the linear model to better fit with 
non-linear data. Linear regression is an automatic learning 
technique that allows researcher to be associated with a 
variable or an independent with dependent variable. 
Similarly, quintile regression is the degree of use of linear 
regression use outliers, high skewedness’ and 
heteroscedasticity in the variable datasets. Although linear 
regression predicts the average of a relationship of 
dependent and independent variables which predicts the 
quintile for the given independent variables. Which try to 
estimate the quintile of the dependent variable given the 
values of X, where the dependent variable must be 
continuous. The QR is more appropriate when the conditions 
of normality and homoscedasticity are violated. Although it 
has recently increased its popularity in educational statistics 
(Chen, 2013), quintile regression provides an alternative to 
ordinary least squares (OLS) which typically assumes that 
the associations between independent and dependent 
variables are equal for levels. Quantum regression is not an 
estimated regression in a quintile, or sub-sample of data as 
the name suggests. Quantum methods allow the analyst to 
relax the intake of the common regression slope. In the OLS 
regression, the goal is to reduce the distances between the 
values predicted by the regression line and the observed 
values. In contrast, quintile regression reflects values 

differentially and thus seeks to reduce weighted distances 
(Cook, 2013). The main advantage of the quintile regression 
method is that the method makes it possible to understand 
the relationships between the external variables and the 
mean of the data, so it is useful for understanding the results 
that are not normally distributed and having non-linear 
predictive variables. Suppose that the regression equation 
for the 25th regression quartile is: 
y = 5.2333 + 700.823 x. It means that for an increase of units 
in x the estimated increase of the 25th quintile of e in 
700,823 units. The advantages of quintile on linear 
regression are quite advantageous when the 
heteroscedasticity is present in the data, is robust for the 
anomalous values, the distribution of the dependent variable 
can be described through different quintiles and is more 
useful than linear regression when the data is asymmetric. 
The main advantage of the quintile regression methodology 
is that the method allows to understand the relationships 
between variables outside the data mean, so it is useful to 
understand the results that are not normally distributed and 
that have non-linear relationships with the predictor 
variables. The coefficients we obtain in the quintile 
regression for a particular quintile must differ significantly 
from those we obtain from linear regression. This can be 
done by looking at the confidence intervals of the regression 
coefficients of the estimates obtained from both regressions. 
The programming language R is a statistical language of 
open source programming that is free and has the support of 
a large community, developed by Ross Ihaka and Robert 
Gentleman. Software R is both a software and a 
programming language in which the user can develop many 
programs (Rogers, 1973). It has the ability to write many 
lines of code and produce output in the console command. R 
is available for all platforms; now there are more than 
10,000 R packages available for download (Smith, 2018), 
which largely support data analysis. 
Case 1: How to find linear regression equation of Table 
No 1 data sets. 
Here the relationship between age and glucose can easily 
calculated mathematically after calculating xy, x2,  y2 and  
 

Table No: 1 Calculate Linear Regression 

S.N Age(X) Glucose(Y) XY X2 Y2 

1 43 99 4257 1849 9801 

2 21 65 1365 441 4225 

3 25 79 1975 625 6241 

4 42 75 3150 1764 5625 

5 57 87 4959 3249 7569 

6 59 81 4779 3481 6561 

Sum 247 486 20485 11409 40022 
 
sum of each value sets mathematically. 
a= (Ʃy)*(Ʃx2)- (Ʃx)*(Ʃxy)/n (Ʃx2)-(Ʃx)2  
=65.1416 (Intercept) 
b= n(Ʃxy)-(Ʃx)* (Ʃy)/n(Ʃx2)-(Ʃx)2  
b=0.3852 (Coefficient) 
y=a+bx (Equation)  
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y=65.14+0.38x 
From this equation we can easily predict y’ value by 
substituting x values. 

Using R Programming 
The lm command is used to calculate simple linear 
regression in R programming which fits linear models. It can 
be used to carry out regression, single analysis of variance 
and analysis of covariance the above table could be analysis 
as follows.  
> library(readxl) 
> gulcose <- read_excel("C:/Users/Yagya 
/Desktop /gulcose.xlsx") 
> View(gulcose) 
> str(gulcose) 
> reg=lm(gulcose$Gulcose~gulcose$Age, 
data=gulcose) 
> reglm(formula = gulcose$Gulcose ~ gulcose$ 
Age, data = gulcose) 
Coefficients: 
(Intercept)  gulcose$Age   
    65.1416       0.3852  
> plot(gulcose$Age,gulcose$Gulcose,xlab 
="Age",ylab="Gulcose") 
> abline(lm(gulcose$Gulcose~gulcose$Age)) 
The figure demonstrates positive relationship between 
glucose and age relationship of above table data sets . 

Case 2: How to find the regression of Table No 
Similarly from the Table No 2 the consumption rate of ice-
cream uses of XYZ company having income, price and 
temperature variables data can be analyzed whether the 
income price and temperature increase or decrease the 
consumption of ice-cream linear relationship for future 
prediction could analyzed. Here is consumption is dependent 
variable depends on various independent variables where we 
can easily find out the pattern of consumption rate based on 
income price and temperature relationship. 

Table No 2: Find the regression 

S.N Consume Income Price Temp 

1 0.38 77 0.2 37 

2 0.37 75 0.22 38 

3 0.40 82 0.24 39 

4 0.40 85 0.26 39 

5 0.41 84 0.28 40 

6 0.42 84 0.3 40 

7 0.43 85 0.32 41 

8 0.44 86 0.34 42 

9 0.45 87 0.36 42 

10 0.46 88 0.38 43 

11 0.47 91 0.4 43 

 
 
Using R Programming 
>onee=read.csv(“c:/income.csv”,header=True) 
> View(onee) 
> onee 

> reg=lm(Consum~Income+Price+ Temp,data=onee) 
> summary(reg) 
lm(formula = onee$Consum ~ Income + Price + Temp, 
data = onee) 

Residuals: 
Min         1Q     Median         3Q        Max  
-0.0067851 -0.0015990  0.0004569  0.0015990   
Coefficients: 
Estimate Std. Error t value Pr(>|t|)   
Income      1.675e-03  8.141e-04   2.058   0.0786  
Price       3.934e-01  1.607e-01   2.448   0.0442 * 
Temp        1.035e-16  5.011e-03   0.000   1.0000   
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’  
Residual standard error: 0.004872 on 7 degrees of freedom, 
Multiple R-squared:  0.9853, Adjusted R-squared:  
0.9789 F-statistic: 155.9 on 3 and 7 DF,  p-value: 9.017e-07 
From the above coefficient we can easily predicated equation 
of regression line consumption= intercept+(1.675e-03  
)*income+(3.934e-01  )*price+(1.035e-16  )*temp + e 
(residual value: the lowest will be taken when regression 
will high or vice versa). 
 The price variable followed by * indicates a more 
significant relationship means that there are more ice cream 
sales when customer prices have risen. If the intersection 
indicates -ve with consumption, there was -ve with the 
dependent variable. The residual value is much lower 
(0.00.487 thousand indicates no much impact on residual 
values, similarly, the multiple square R value and R2 
adjusted value suggested that 0.98% trust that the model 
satisfied the data and the value p (9.017 e-07) If <0.05 
indicates that we can reject the null hypothesis, then we 
conclude that there is no relation between the dependent 
and independent variables, the value of t is greater than the 
independent variable means that there was a positive 
correlation between the variables, therefore, it is concluded 
that the salary increases 001.675 when a unitary change in 
income in a similar way, the ice cream will increase by 
0.3934. 
 Logistic regression is a statistical method used to 
analyze one or more independent variables. In this type, the 
dependent variables in the binary data are encoded as 1 for 
TRUE and 0 for FALSE (dichotomous characteristics). The 
goal of logistic regression is to find the most appropriate 
model to describe the relationship between dichotomous 
characteristics and the set of independent variables. Logistic 
regression generates formula coefficient to predict a logit 
transformation of interest probability with formula logit (p) 
= B0 + b1x1 + B2X2 + B3X3 + BnXn where p is the 
probability of the presence of the characteristics. Logit 
transformation is defined as registered probabilities: Quota 
= (p / p-1) and logit (p) = ln (p / 1-p). However, the process 
requires data preparation, identification of derived variables, 
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classification and continuous diagnosis of variable model. 
Logistic regression allows you to determine the probability 
that an event is acquired in binary format, which gives an S 
line shape while linear regression produces a straight line. 
 The Table No 3 stores the record of students who 
qualify college, GPA, range admit two categorical variables 
(yes for admission and zero for student records similar 
column interval not supported includes four categories 
1,2,3,4 description of categories of factor type. 
 

Table No 3: Find the Regression 

admit grade Gpa Rank 

0 380 3.6 3 

1 660 3.67 3 

1 800 4 1 

1 640 3.19 4 

0 800 2.93 4 

1 640 2.93 2 

1 520 3.8 1 

0 760 3.39 2 

1 700 3.92 3 

0 400 3.6 2 

0 700 3.92 3 

1 440 3.22 3 

1 800 4 1 

1 700 4 1 

1 700 3.92 3 

0 400 3.6 2 

0 700 3.92 3 

1 440 3.22 3 

1 800 4 1 

1 700 4 1 

 
Using R Programming 
> last <- read_excel("C:/Users/Yagya/ Desktop/last.xlsx") 
> View(last) 

> head(last) 
# A tibble: 6 x 4 
  admit grade   Gpa  Rank 
  <dbl> <dbl> <dbl> <dbl> 
1    0.  380.  3.60    3. 
2    1.  660.  3.67    3. 
3    1.  800.  4.00    1. 
4    1.  640.  3.19    4. 
5    0.  800.  2.93    4. 
6    1.  640.  2.93    2. 
> summary(last) 
     admit          grade          Gpa             Rank     
 Min.   :0.00   Min.   :380   Min.   :2.930   Min.   :1.0   
 1st Qu.:0.00   1st Qu.:500   1st Qu.:3.348   1st Qu.:1.0   
 Median :1.00   Median :700   Median :3.735   Median :2.5   
 Mean   :0.65   Mean   :634   Mean   :3.642    
> str(last) 
Classes ‘tbl_df’, ‘tbl’ and 'data.frame': 20 obs. of  4 
variables: 
 $ admit: num  0 1 1 1 0 1 1 0 1 0 ... 
 $ grade: num  380 660 800 640 800 640 520 760  
 $ Gpa  : num  3.6 3.67 4 3.19 2.93 2.93 3.8 3.39  
 $ Rank : num  3 3 1 4 4 2 1 2 3 2 ... 
> last$admit=as.factor(last$admit)# converting 
dicitonomous 
> last$Rank=as.factor(last$Rank) # converting multilevel 
categorical variable 
> summary(last) 
 admit      grade          Gpa        Rank  
 0: 7   Min.   :380   Min.   :2.930   1:6   
 > xtab(~admit+Rank,data=last) 
Error in xtab(~admit + Rank, data = last) :  
  could not find function "xtab" 
> xtabs(~admit+Rank,data=last)# which display the two 
way table of admit and rank data 
     Rank 
admit 1 2 3 4 
    0 0 3 3 1 
    1 6 1 5 1 
> fit= glm(admit ~ grade + Gpa + Rank, data=last,family = 
binomial) 
> summary(fit) 
Call: 
glm(formula = admit ~ grade + Gpa + Rank, family = 
binomial,  data = last) 
Deviance Residuals:  
 Min        1Q    Median        3Q       Max   
-1.56462  -0.40073   0.00008   0.53338   1.56462   
Coefficients: 
Estimate Std. Error z value Pr(>|z|) 
(Intercept)3.571e+01  4.375e+03  .008  0.993 
grade     3.348e-03  5.969e-03   0.561    0.575 
Gpa       -4.677e+00  3.207e+00  -1.458    0.145 
Rank2   -2.346e+01  4.375e+03  -0.005    0.996 
Rank3   -1.983e+01  4.375e+03  -0.005    0.996 
Rank4   -2.381e+01  4.375e+03  -0.005    0.996 
(Dispersion parameter for binomial family taken to be 1) 
Null deviance: 25.898  on 19  degrees of freedom Residual 
deviance: 14.793  on 14  degrees of freedom AIC: 26.793 
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Number of Fisher Scoring iterations: 18. The deviance 
residual displays minimum, maximum, median and quartiles 
values, the logistic coefficient displays the data of intercepts 
of 3.571e+01 the grade has positive impact on when each 
unit changes of grade changes by log odd 3.348e-03   but Gpa 
grade had –ve relation when one unit change by -4.677e+00  
in every changes similarly the three Rank categories have –
ve of log odd with rank 1 category respectively. The AIC 
value is fit between two or more models. If you don’t set 
Rank variable as factor it will display its category too. 
> head(fit$fitted) 
> fitt=round(fit$fitted) 
> comparee=ftable(fitt,last$admit) 
> accuracy=sum(diag(comparee,last$admit) 
> acuracy=sum(diag(comparee)) 
> accuracy 
> acuracy/20*100 
[1] 75 
 
Polynomial Regression Using R Programming 
> floride <- 
read_excel("C:/Users/Yagya/Desktop/floride.xlsx") 
> View(floride) 
> x=floride$Dmfper100 
> y=floride$FlouridePPM 
>xsq=x^2 
>xcub=x^3 
>xqua=x^4 
> install.packages("ggplot") 
> plot(x,y, pch=19,xlab="floride 
concentration",ylab="index") 
>fit1=lm(y~x) 
> anova(fit1) 
Analysis of Variance Table 
Response: y 
Df Sum Sq Mean Sq F value   Pr(>F)     
x          1 8.1047  8.1047  288.69 6.99e-15 *** 
Residuals 24 0.6738  0.0281                      
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ Null 
hypothesis has no relationship  
fit2=lm(y~x+xsq) 
> anova(fit2) 
Analysis of Variance Table 
Response: y 
Df Sum Sq Mean Sq  F value    Pr(>F)     
x          1 8.1047  8.1047 277.2516 2.518e-14 *** 
xsq        1 0.0014  0.0014   0.0492    0.8264     
Residuals 23 0.6723  0.0292                        
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’  
> abline(fit1, col="red") 
> abline(fit2, col="green")  
> abline(fit1, col="red") 
> xv=seq(min(x),max(x),0.01) 
> yv=predict(fit2,list(x=xv,xsq=xv^2)) 
> lines(xv,xy,col="black") 

 
 
Quantile Regression in R 
The quantile regression needs install quantreg package in 
order to carry out quantile regression. 
install.packages("quantreg") . library(quantreg). The  rq 
function try to predict the estimate the 25th quantile of 
Quantile_health data sets having  2955 obs. of  8 variables 
where  tau = 0.25 is  median regression. Similarly, it can 
run quantile regression for multiple quantiles in a single 
plot using sequence parameter.  We can check whether 
our quantile regression results differ from the OLS results 
using plots. 
> str(mydata) 
Classes ‘tbl_df’, ‘tbl’ and 'data.frame': 2955 obs. of  8 
variables: 
$ dupersid: num  93193020 72072017 25296013  
 ………………… 
 $ white   : num  1 1 1 1 1 1 1 1 1 1 ... 
> y=cbind(totexp) 
> attach(mydata) 
> y=cbind(totexp) 
> x=cbind(suppins,totchr,age,female,white) 
> qreg=lm(y~x,data=mydata) 
> summary(qreg) 
Call: 
lm(formula = y ~ x, data = mydata) 
Residuals: 
Min     1Q Median     3Q    Max  
-16146  -5372  -2804    457 115461  
Coefficients: 
Estimate Std. Error t value Pr(>|t|)     
(Intercept)   461.492   2777.453   0.166  0.86805     
xsuppins      585.984    436.309   1.343  0.17936     
xtotchr      2528.079    164.834  15.337  < 2e-16 *** 
xage            6.711     33.768   0.199  0.84248     
xfemale     -1239.866    433.110  -2.863  0.00423 **  
Residual standard error: 11520 on 2949 degrees of 
freedom. Multiple R-squared:  0.07828, Adjusted R-
squared:  0.07672 . F-statistic: 50.09 on 5 and 2949 DF,  p-
value: < 2.2e-16 
> install.packages("quatrile") 
> install.packages("quantreg") 
> install.packages("quantreg") 
> summary(rq (y ~ x, data=mydata,tau=0.25,method='fn'), 
se='ker')  
Call: rq(formula = y ~ x, tau = 0.25, data = mydata, method 
= "fn") 
tau: [1] 0.25 
Coefficients: 
Value       Std. Error  t value     Pr(>|t|)    
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(Intercept) -1412.88 709.49206 -1.9914   .0465 
xsuppins      453.44  113.929     3.98004   .0007 
……………… 
xwhite        338.08   283.93954     1.199     0.233 
> summary(rq (y ~ x, data=mydata,tau=0.5,method='fn'), 
se='ker')  
Call: rq(formula = y ~ x, tau = 0.5, data = mydata, method = 
"fn") 
tau: [1] 0.5 
Coefficients: 
Value       Std. Error  t value     Pr(>|t|)    
(Intercept) -2182.33238   993.25180    -2.19716      
xsuppins      687.22222   159.39319     4.31149      
…………….. 
xwhite        562.66571   418.05964     1.34590      
> summary(rq (y ~ x, data=mydata,tau=0.75,method='fn'), 
se='ker')  
Call: rq(formula = y ~ x, tau = 0.75, data = mydata, method 
= "fn") 
tau: [1] 0.75 
Coefficients: 
Value       Std. Error  t value     Pr(>|t|)    
(Intercept) -4512.04545  2120.58771    -2.12773      
xsuppins      708.40909   336.40195     2.10584      
…………… 
xwhite        801.68182   625.02743     1.28263      
> q1=summary(rq (y ~ x, 
data=mydata,tau=0.25,method='fn'), se='ker')  
> q2=summary(rq (y ~ x, 
data=mydata,tau=0.5,method='fn'), se='ker')  
> q3=summary(rq (y ~ x, 
data=mydata,tau=0.75,method='fn'), se='ker') 
> regall=rq(y~x,tau=seq(0.05,0.95, by= .05),data=mydata) 
> regall 
rq(formula = y ~ x, tau = seq(0.05, 0.95, by = 0.05), data = 
mydata) 
Coefficients: 
tau= 0.05 tau= 0.10  tau= 0.15    tau= 0.20   (Intercept)   -
1008.0   -932.75 -989.10345 -1315.133333 -1412.88889 -
1702.375 
xsuppins        247.4    301.15  371.81034   446.600000   
453.44444   506.125 
……………. 
(Intercept) -1707.65766 -2155.72941     -1953 - 
xsuppins      541.73874   596.94118       702    
…………… 
tau= 0.65   tau= 0.70   tau= 0.75  tau= 0. (Intercept) -
2605.22222 -3906.57143 -4512.04545 -6584.4118 -
390.5366 
xsuppins     1094.23333   833.28571   708.40909    
…………. 
xwhite        464.94444   340.14286   801.68182   
Degrees of freedom: 2955 total; 2949 residual 
>regall=summary(rq(y~x,tau=seq(0.05,0.95, by= 
.05),data=mydata)) 
>plot(regall) 

 
Numerous quantiles are represented by the X axis. The red 
center line indicates the estimates of the OLS coefficients and 
the lines of the red dot are the confidence intervals around 
those OLS coefficients for different quantiles. The black point 
line is the quantile regression estimate and the gray area is 
the confidence interval for them for different quantiles. We 
can see that, for the whole variable, it is the regression match 
estimated for most of the quantiles. Therefore, our use of 
quantile regression is not justifiable for these quantiles. In 
other words, we want both the red and the gray lines to 
overlap as little as possible to justify the use of quantile 
regression. 

 
CONCLUSIONS 

In statistics, linear regression models the 
relationship between a dependent variable and one or 
more explanatory variables using a linear function. If 
two or more explanatory variables have a linear 
relation to the dependent variable, the regression is 
called multiple linear regression. Multiple regression, 
on the other hand, is a larger class of regressions that 
includes linear and nonlinear regressions with multiple 
explanatory variables. Regression analysis is a common 
way to discover a relationship between dependent and 
explanatory variables. However, the statistical 
relationship does not mean that the explanatory 
variables cause the dependent variable; It can be a 
significant association in the data. Linear regression 
attempts to draw a line closer to the data by identifying 
the slope and intersection that define the line and 
minimizing regression errors. However, many 
relationships in the data do not follow a straight line, so 
statisticians use non-linear regression instead.  The 
relationship between the search variables is 
considered a correlation, it is a number that can be 
used to describe the degree of association between 
them. The correlation is between -1 and 1 and 
expresses the relative variation between the search 
variables. Multiple correlation and partial correlation 
are classified as correlated variations between three or 
more variables. Two variables are correlated only 
when they vary in such a way that the higher and lower 
values of a variable correspond to the higher and lower 
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values of the other variable. We may also know if they 
are related when the highest value of a variable 
corresponds to the lowest value of the other. The 
research data could be easily analyzed using the R 
programming instead of the mathematical calculation. 
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