Algebraic Topology Variations of Prime Order Automorphisms with Applications

Pankaj Prasad Dwivedi, Dilip Kumar Sharma
Jaypee University of Engineering and Technology, Guna – M.P., India
pankaj.career9@gmail.com

Annotation:
Simple polarized abelian kinds of odd integer dimensions have cyclic automorphism groups across Galois field. To create completely simple polarized algebraic variations of prime dimensions across finite fields, with a cyclic group of maximal order as their automorphism group. In this work, we focus on polarized Abelian types with an automorphism of prime order $s>2$. Convinced usual requirements on the algebraic expressions of its action on first-order differentials imply that such polarized varieties aren’t Jacobians of curvatures. There has been a lot of effort put into estimating the size of automorphism groups of broad categories. The latest articles, as well as the references they include, give a wealth of information on this subject.

1. Introduction

The thing we're interested in is looking at the prime number distributions, which can be represented as a property of the basis area of certain completely simple algebraic variety in our design. Let G be a related simple Lie group with the Lie algebra L as the appropriate Lie lattice. Let L' be a maximum regular semi simple Lie subalgebra of L having subgroup G' as the corresponding subgroup. The centralizer of G' in G and its influence on the forms of the Lie algebra L are the subjects of this work. These centralizers are abelian subgroup of G in general. In the abelian group [1] provided the first precise account of continuously centralizers, wherever they exist, whereas [2] provided the first precise account of discrete centralizers [15-29].

Suppose $n \geq 1$ is an absolute value and (\mathbb{Z}, ∂) a primarily polarized n—dimensional abelian variety over the complex number \mathbb{C}, an automorphism of (\mathbb{Z}, ∂) that fulfills the cyclotomic expression $\sum_{j=0}^{s-1} \alpha^j = 0$ in $\text{End} \ Z$. In other terms, α is a regular automorphism with order s with a limited set of established positions. This results in embeds $[30-45]$.

$$\mathbb{Z}(\omega_s) \hookrightarrow \text{End}(\mathbb{Z}), 1 \mapsto 1_{\mathbb{Z}}, \omega_s \mapsto \alpha,$$

$$\mathbb{Q}(\omega_s) \hookrightarrow \text{End}^0(\mathbb{Z}), 1 \mapsto 1_{\mathbb{Z}}, \omega_s \mapsto \alpha.$$
We describe some mathematical notations which is used above, such as \(\mathbb{C} \) is denoted by complex numbers, \(\mathbb{R} \) is denoted by field of a real number [46-77]. The field of rational numbers is represented by \(\mathbb{Q} \), and \(\mathbb{Z}_+ \) is represented by the set of nonnegative integers while \(\mathbb{Z} \) is the ring of integers. The following relationship of these numbers are well known in the literature [78-101].

\[
\mathbb{Z}_+ \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}
\]

For cardinality of \(B \), we write \(\#(B) \) if \(B \) is finite or maybe an empty set. Suppose \(s \) be an odd prime and \(\omega_s \in \mathbb{C} \) to be the primitive (complex) \(s \)th root of unity. For the \(s \)th cyclotomic ring and the \(s \)th cyclotomic field, we write \(\mathbb{Z}[\omega_s] \) and \(\mathbb{Q}(\omega_s) \) respectively. It forms the cyclic group \(\mu_s \) of \(p^s \) roots of unity of multiplicative order \(s \). We have \(\omega_s \in \mu_s \subset \mathbb{Z}[\omega_s] \subset \mathbb{Q}(\omega_s) \subset \mathbb{C} \).

Since the degree \([\mathbb{Q}(\omega_s):\mathbb{Q}] = s - 1\), it follows \((s - 1)|2n\). The \(n \)-dimensional complex vector space \(\mathbb{K}^1(Z) \) is operates on \(\mathbb{Q}(\omega_s) \) of variances of the first form on \(Z \) through functionality. The condition described in [9,10].

This gives \(\mathbb{K}^1(Z) \) the structure of \(\mathbb{Q}(\omega_s) \otimes_{\mathbb{Q}} \mathbb{C} \)-module. Obviously,

\[
\mathbb{Q}(\omega_s) \otimes_{\mathbb{Q}} \mathbb{C} = \bigoplus_{j=1}^{s-1} \mathbb{C}
\]

And the \(j \)th summand relates to the \(\mathbb{Q}(\omega_s) \mapsto \mathbb{C} \) field embed those transfers \(\omega_s \) to \(\omega_s^j \). As a result, \(\mathbb{Q}(\omega_s) \) operates on \(\mathbb{K}^1(Z) \) with multiplicities \(c_j(j = 1, \ldots, s - 1) \). All \(c_j \) are non-negative integers and \(\sum_{j=1}^{s-1} c_j = n \).

2. Principally polarized abelian varieties with automorphisms:

The fundamental findings are extended to mostly polarized abelian variants in this section. Direct approaches are almost certainly capable of improving real estimations [102-134]. A recent Feat finding, according to an argument of this rule, can be utilized to produce much developing work in characteristic 0. However, in the case of a good trait, such reasoning does not hold water [135-161].

In calculation,

\[
c_j + c_{s-j} = \frac{2n}{s-1} \text{ for all } j = 1, \ldots, s - 1; \tag{1}
\]

In general, this is a special case of a well-known outcome about endomorphism fields of complex abelian varieties [6].

On the finite cyclic group \(G = (\mathbb{Z}/s\mathbb{Z})^* \) of order \((s - 1) \), We may view \(\{c\} \) as a nonnegative integer-valued function \(c = c_2 \), were

\[
c(j \mod s) = c_j(1 \leq j \leq s - 1), \sum_{h \in G} c(h) = n. \tag{2}
\]

The identity element \(1 \mod s \) and the only element \((-1)mod s = (s - 1)mod s \) of order 2 are two distinguished elements contains in group \(G \). We write \(-h \) for the product \((-1)mod s \cdot h \) in \(G \), if \(h \) is an element of \(G \). If \(h = jmod s \) then \(-h = (s - j)mod s \). In light of (1),

\[
c_Z(h) + c_Z(-h) = \frac{2n}{s-1} \text{ for all } h \in G. \tag{3}
\]

Definition 2.1. Suppose a nonnegative integer-valued function to be \(l : G \rightarrow \mathbb{Z}_+ \). Then we say that \(l \) is admissible if

\[
c(h) + c(-h) = \frac{2n}{s-1} \quad \forall h \in G.
\]

The following ways is satisfied the above result

(i) In light of (3), our \(c = c_Z \) is admissible.
(ii) The number of admissible functions (forgiven n and p) is obviously
\[
\left(\frac{2n}{s-1} + 1 \right)^{(s-1)/2}
\]

Example 2.2. Assume thats = 3 and E be an elliptical curvature concluded C multiplied by \(\mathbb{Z}[\omega_3]\). We may take as E the smooth projective model of \(x^2 = z^3 - 1\) where \(\gamma_3\) acts on E by
\[\alpha_E: (z, x) \mapsto (z, \gamma_3x).\]
Clearly, \(\alpha_E\) satisfies the 3rd cyclotomic equation and respects the only principal polarization on E.

Let \(l(1)\) and \(l(-1)\)be nonnegative integers and n be a positive integer, whose sum is n. Let us put
\[X_1 = E^{l(1)}, X_2 = E^{l(2)}, X = X_1 \times X_2.\]
Let the principal polarization on Xis \(\partial_X\) that is the product of n pull-backs of the polarization on E. Let us consider the automorphism \(\alpha_3\) of Xthat act (diagonally) as \(\alpha_E\) on \(X_1 = E^{l(1)}\) and as \(\alpha_E^{-1}\) on \(X_2 = E^{l(2)}\).
Clearly, \(\alpha_3\) satisfies the 3rd cyclotomic equation and respects \(\partial_X\). It is also clear that
\[c_X(1) = l(1), c_X(1) = l(2).\]

We will also need the function
\[j: G = (\mathbb{Z}/s\mathbb{Z})^* \rightarrow \mathbb{Z}, (j \mod s) \mapsto j(1 \leq j \leq s - 1)\] \((4)\)

Clearly,
\[j(h_1h_2) \equiv j(h_1)j(h_2) \mod s \forall h_1, h_2 \in G\] \((5)\)
Recall that if \(l_1(h)\) and \(l_2(h)\)are composite-valued functions on G then for its convolution is the function \(l_1 \ast l_2(h)\)on G defined by
\[l_1 \ast l_2(h) = \frac{1}{s-1} \sum_{u \in G} l_1(u)l_2(u^{-1}h)\] \((6)\)

Theorem 2.3. Assume that \((Z, \partial)\) is the Jacobian of a smoothly complex type ncurvatureC with canonical primary polarisation. Then there will be a function with a positive integer value.

\[d: G = (\mathbb{Z}/s\mathbb{Z})^* \rightarrow \mathbb{Z} \subset \mathbb{C}\]
such that
\[\sum_{h \in G} d(h) = \frac{2n}{s-1} + 2,\] \((7)\)
\[c(v) = \frac{(s-1)}{s} \cdot d \ast f(-v) - 1 \forall v \in G.\] \((8)\)

Proof. Assume \((Z, \partial) \cong (f(C), \Theta)\) where \(f(C)\) is a Jacobian with standard primary polarization \(\Theta\) and C is an irreducible smooth flat dimension ncurvature. The Torelli theorem in Weil’s way \([11,12,14]\) implies the existence of an automorphism: \(\beta: C \rightarrow C\), which by functionality induces either \(\alpha\) or \(-\alpha\) on \(f(C) = Z\). We can and shall assume that induces by replacing \(\beta\) by \(\beta^{s+1}\) and keeping in mind that \((s + 1)\) is even and \(\alpha^s\) is an automorphism that is the identity of \(Z = f(C)\). \(\beta\) induces \(\alpha\) is the identity and \(\beta^a\) an automorphism of C since it produces the identical map on \(f(C)\) and \(n > 1\). The operation of \(\beta\) on C results in group insertion \([162-175]\).

\[\mu_s \mapsto Aut(C), \omega_s \mapsto \beta.\]
Assume $P \in C$ is a constant value of β. The β automorphism of the appropriate one-dimensional curvature interplanetary $T_p^1(C)$ is then induced, which is multiplied by a complex number ϵ_p. ϵ_p is a sth root of unity $[176-190]$.

Corollary 2.4. The smooth projective irreducible curvature is the quotient $D = C/\mu_s$. The degree of the map $C \to D$ is s, its implications vertices are precise duplicates of point sets of β, and all implications indicators are s.

Lemma 2.5. The projective line is biregularly isomorphic to D.

The proof of the above Lemma 2.5 Albanese functionally, the map $C \to D$ generates the surjective homomorphism of the respective jacobians $J(C) \to J(D)$, which slays the factors modules of the type $(Q) - (\beta(Q))$ for each $Q \in C(\mathbb{C})$. This means that it is lethal to $(1 - \alpha)(C)$, on either side, $1 - \alpha : J(C) \to J(C)$ is an isogeny. This suggests that the duplicate of $J(C)$ in $J(D)$ is zero, and thus $J(D) = 0$ due to surjectiveness. This suggests that D's genus is zero.

Corollary 2.6. The fixed points of β for the number $F(\beta)$ is $\frac{2n}{s-1} + 2$.

Proof: Applying the Riemann-Hurwitz’s formula for proof of the above Corollary to $C \to D$, we get

$$2n - 2 = s \cdot (-2) + (s - 1) \cdot F(\beta)$$

Corollary 2.7. Let $\beta^*: \mathbb{N}^1(C) \to \mathbb{N}^1(C)$ be the automorphism of the g-dimensional complex vector space $\mathbb{N}^1(C)$ induced by β and τ the trace of β^*. Then

$$\tau = \sum_{j=1}^{s-1} c_j \omega_s^j = \sum_{h \in G} c(h) \omega_s^h.$$

Proof of the above Corollary consider the regular map s and pick a β-invariant point P_0

$$\psi : C \to J(C), Q \mapsto \alpha((Q) - (P_0))$$

The complex vector spaces is well-known that ψ induces an isomorphism.

$$\psi^*: \mathbb{N}^1(J(C)) \cong \mathbb{N}^1(C)$$

Obviously,

$$\beta^* = \psi^* \alpha^* \psi^{*-1}$$

where $\alpha^*: \mathbb{N}^1(J(C)) = \mathbb{N}^1(J(C))$ denotes the \mathbb{C}-linear automorphism generated by α. This means that the traces of β^* and α^* do correspond. The definition of a c_j now entails that the trace of β^* equals $\sum_{j=1}^{s-1} c_j \omega_s^j$.

Lemma 2.8. Suppose a primitive sth root of unity is $\omega \in \mathbb{C}$. Then

$$\frac{1}{1-\omega} = -\frac{\sum_{j=1}^{s-1} j \omega^j}{s} = -\frac{\sum_{h \in G} j(h) \omega^h}{s}.$$

Proof. We have

$$(1 - \omega) \left(\sum_{j=1}^{s-1} j \omega^j \right) = \sum_{j=1}^{s-1} (j \omega^j - j \omega^{j+1}) = \left(\sum_{j=1}^{s-1} \omega^j \right) - (s - 1) \omega^s = (-1) - (s - 1) = -s.$$
Ending the Theorem 1.4 proofs: Let B denote the collection of specified points of β. We already know that
$$\#(B) = \frac{2n}{s-1} + 2.$$
By using the holomorphic Lefschetz convergence point equations [1,2,5] to β,

$$1 - \bar{\tau} = \sum_{P \in B} \frac{1}{1 - \bar{\epsilon}_P}$$

(10)

where $\bar{\tau}$ is the complex conjugate of τ. Recall that every ϵ_P is a (primitive) p^{th} root of unity. Now Theorem 1.4 follows readily from the following assertion.

Lemma 2.9. Let us define for each $h \in G$ the nonnegative integer $d(h)$ as the number of fixed points $P \in B \subset C(\mathbb{C})$ such that $\epsilon_P = \omega^{sh}$. Then

$$\sum_{h \in G} d(h) = F(\beta) = \frac{2n}{s-1} + 2.$$

(11)

and

$$c(v) = \frac{(s-1)}{s} \cdot d * j(-v) - 1 \forall v \in G.$$

(12)

Proof: The equality (11) is obvious to prove Lemma 2.9. Let us prove (12). Combining (10) with Lemma 2.8 (applied to $\omega = \omega^h$ and Corollary 2.7) we get

$$1 - \sum_{h \in G} c(h) \omega^{-h} = \sum_{u \in G} d(u) \frac{1}{1 - \omega^u} = \frac{-1}{s} \left(\sum_{u \in G} d(u) \left(\sum_{h \in G} j(h) \omega^{hu} \right) \right)$$

$$= \frac{-1}{s} \sum_{v \in G} \left(\sum_{u \in G} d(u) j(u^{-1}v) \omega^v \right) = \frac{-1}{s} \sum_{v \in G} d * j(v) \omega^v$$

(here we use a substitution $v = hu$). Taking into account that

$$0 = 1 + \sum_{j=1}^{s-1} \omega^j = 1 + \sum_{v \in G} \omega^v,$$

we obtain

$$- \left(\sum_{v \in G} \omega^v \right) - \sum_{h \in G} c(h) \omega^{-h} = - \frac{(s-1)}{s} \sum_{v \in G} d * j(v) \omega^v.$$

Taking into account that the $(s-1)$-element set

$$\{\omega^j | 1 \leq j \leq s - 1\} = \{\omega^v | v \in G\}$$

we get $1 + c(-v) = (s-1)d * j(v)/s$, i.e.,

$$c(v) = \frac{(s-1)}{s} \cdot d * j(-v) - 1 \forall v \in G.$$

Remark 2.10. Let us consider the function

$$j_0 = j - \frac{s}{2}, G = (\mathbb{Z}/s\mathbb{Z})^\ast \rightarrow \mathbb{Q}, (j \mod s) \mapsto j - \frac{s}{2} \text{ where } j = 1, ..., s - 1$$

(13)

Then

$$j_0(-u) = -j_0(u) \forall u \in G.$$

(14)
We have
\[d \ast j(v) = d \ast j_0(v) + \frac{s}{2(s-1)} \sum_{h \in G} d(h) = d \ast j_0(v) + \frac{s}{2(s-1)} \left(\frac{2n}{s-1} + 2 \right). \]
This implies that
\[\frac{(s-1)}{s} \cdot d \ast j(v) = \frac{(s-1)}{s} \cdot d \ast j_0(v) + \frac{n}{s-1} + 1 \]
and therefore
\[c(v) = \frac{(s-1)}{s} \cdot d \ast j_0(-v) + \frac{n}{s-1} \forall v \in G. \tag{15} \]
On the other hand, it follows from (14) that the convolution \(d \ast j_0 \) also satisfies
\[d \ast j_0(-v) = d \ast j_0(v) \forall v \in G. \]
This implies that
\[c(v) + c(-v) = \frac{(s-1)}{s} \cdot d \ast j_0(-v) + \frac{n}{s-1} + \frac{(s-1)}{s} \cdot d \ast j_0(v) + \frac{n}{s-1} = \frac{2n}{s-1} \forall v \in G. \tag{16} \]
Actually, we already know it see (1). It follows from (16) that
\[c(v) = \frac{2n}{s-1} - \frac{(s-1)}{s} \cdot d \ast j(v) + 1 \forall v \in G \tag{17} \]
Corollary 2.11. We preserve Theorem 14’s terminology and assumptions. Let \(d' : G \rightarrow \mathbb{C} \) be a complex-valued function on \(G \) in the sense that
\[c(v) = \frac{(s-1)}{s} \cdot d'(-v) - 1. \]
This implies that
\[c(v) + c(-v) = \frac{(s-1)}{s} \cdot d'(-v) + \frac{n}{s-1} + \frac{(s-1)}{s} \cdot d'(v) + \frac{n}{s-1} = \frac{2n}{s-1} \forall v \in G. \]
Then the odd parts of functions \(d \) and \(d' \) do coincide, i.e.,
\[d'(v) - d'(-v) = d(v) - d(-v) \]
In particular, if \(s = 3 \) then
\[d'(v) = d(v) \forall v \in G. \]
Proof. If \(l : G \rightarrow \mathbb{C} \) is a complex-valued function on \(G \) and \(\chi : G \rightarrow \mathbb{C}^\ast \) is a character (homomorphism group) then we write
\[a_\chi(l) = \frac{1}{s-1} \sum_{h \in G} l(h) \chi(h) \]
for the corresponding Fourier coefficient of \(l \). We have
\[l(v) = \sum_{\chi \in G} a_\chi(l) \chi(v) \text{ where } \widehat{G} = \text{Hom}(G, \mathbb{C}^\ast) \tag{18} \]
Let us consider the function
\[b : G \rightarrow \mathbb{C}, b(v) = d'(v) - d(v). \]
What we need to check is that
\[b(v) = b(-v) \forall v \in G, \]
which means that for all odd characters \(\chi \) (i.e., characters \(\chi \) of \(G \) with
\[\chi(-1 \text{mod} s) = -1 \]
the corresponding Fourier coefficient
\[a_\chi(b) = 0. \]

It follows from (8) that \(b * j(-v) = 0 \) for all \(v \in G \), i.e.,
\[b * j(v) = 0 \forall v \in G. \]

This implies that
\[0 = a_\chi(b * j) = a_\chi(b \cdot a_\chi(j)) \forall \chi \in (G) \wedge. \]

However, \(a_\chi(j) \neq 0 \) for all odd \(\chi \): it follows from [3,7,13]. This implies that \(a_\chi(b) = 0 \) for all odd \(\chi \). This ends the proof of the first assertion.

Now let \(s = 3 \). Then \(2 + 2n/(s - 1) = n + 2 \) and \(G = \{1, -1\} \). We already know that \(d'(1) - d'(-1) = d(1) - d(-1). \)

Now has only to recall that \(d'(1) + d'(-1) = n + 2 = d(1) + d(-1). \)

Remark 2.12. If \(v \in G \) then there is an integer \(p_v \) that does not divide \(s \) and such that \(j(vh) - pj(h) \) is divisible by \(s \) for all \(h \in G \). Indeed, the function
\[y : G \rightarrow (\mathbb{Z}/s\mathbb{Z})^*, h = j mod s \rightarrow j(h)mod s = jmod s \]
is a homomorphism group. Hence,
\[y(vh) = gy(v)y(h) \forall v, h \in G. \]

Let us choose an integer \(p_v \in \mathbb{Z} \) such that
\[p_v \mod \mathbb{Z} = y(h) = j(h) \mod \mathbb{Z}. \]

\(s \) does not divide \(p_v \) and
\[j(vh)mod s = y(vh) = y(v) \cdot y(h) = (p_v mod s) \cdot y(h) = (p_v mod s) \cdot (j(h)mod s). \] This implies that \(j(vh) - pj(h) \) is divisible by \(s \) for all \(v \in G \).

Corollary 2.13. Let \(G \rightarrow \mathbb{Z} \) be an integer-valued function. Then conditions are equivalent as follows.

(i) \(a * h(1mod s) = \sum_{h \in G} a(h)j(h^{-1}) \in s\mathbb{Z}. \)

(ii) \(a * h(h) = \sum_{h \in G} a(h)j(v/h) \in s\mathbb{Z}v \in G. \)

Proof. Notice that in light of Remark 2.12 (applied to \(h^{-1} \)), if \(v \in G \) then there exists \(p_v \in \mathbb{Z} \) such that \(j(v/h) - pj(h) \) is divisible by \(s \) for all \(h \in G \). In other words, \(j(v/h) \equiv p_v(j(h)mod s \text{ and therefore} \)

\[\sum_{h \in G} a(h)j(v/h) \equiv p_v \sum_{h \in G} a(h)j(h^{-1})mod s \forall v \in G. \]

This proof is completed.

3. A construction of Jacobians

Theorem 2.3 may be considered as an inverse of the following theorem.

Theorem 3.1. Consider \(n \) to be a positive integer, \(s \) odd prime, \(\omega_s \in \mathbb{C}a \text{ primitive } p^t \text{ root of unity, and } G = (\mathbb{Z}/s\mathbb{Z})^* \). Suppose that \((s - 1)divides2n \). Let \(G \rightarrow \mathbb{Z}_4 \) be a non-negative integer-valued function such that

(i) \[\sum_{h \in G} d(h) = \frac{2n}{s-1} + 2. \] (19)
\begin{equation}
\tag{20}
d \ast j(1 \text{mod } s) = \sum_{h \in G} d(h)j(h^{-1}) \in s\mathbb{Z}
\end{equation}
\begin{align*}
\text{Let } &\{l_h(z) \mid h \in G\}\text{bec}(s - 1)\text{-element set of mutually prime nonzero polynomials } l_h(z) \in \mathbb{C}[z] \text{that enjoy the following properties.} \\
&\text{(1) } \deg (l_h) = d(h) \text{ for all } h \in G. \text{ In particular, } l(z) \text{ is a (nonzero) constant polynomial if and only if } d(h) = 0. \\
&\text{(2) Each } l(z) \text{ has no repeated roots.}
\end{align*}

Let us consider a polynomial
\begin{align*}
l(z) &= l_d(z) = \prod_{h \in G} l_h(z)^{j(h^{-1})} \in \mathbb{C}[z]
\end{align*}
of degree $\sum_{h \in G} d(h)j(h^{-1})$. Suppose C be the smooth projective model of the irreducible plane affine curvature
\begin{equation}
\tag{21}
x^2 = l_d(z)
\end{equation}
endowed with an automorphism $\alpha_C : C \to C$ induced by $(z, x) \mapsto (z, \omega_s x)$.

Suppose that the canonically principally polarized Jacobian of C is (J, ∂) endowed by the automorphism α induced by α_C. Then J and α enjoy the following properties.
\begin{align*}
&(a) \dim (J) = n \\
&(b) \sum_{j=0}^{s-1} \alpha^j = 0 \text{ in } \text{End} (J).
\end{align*}

Let $a : G \to \mathbb{Z}_s$ be the corresponding multiplicity function attached to the action of α on the differentials of the first kind on $\mathbb{Z}(2)$. Then
\begin{equation}
\tag{22}
c(\nu) = \frac{(s - 1)}{s} \cdot d \ast j(-\nu) - 1 \forall \nu \in G.
\end{equation}

Proof. If ψ is a root of $l(z)$ then there is exactly one $h \in G$ that ψ is a root of $l_h(z)$; in addition, the multiplicity of ψ (viewed as a root of $l(z)$) is $j(h^{-1})$, which is not divisible by s. This infers that $l(z)$ is not a p^{th} power in the polynomial ring $\mathbb{C}[z]$ and even in the field of rational function $\mathbb{C}(z)$. It follows from theorem 9.1 of [4] that the polynomial $x^2 - l(z) \in \mathbb{C}[z]$ is irreducible over $\mathbb{C}[z]$. This implies that the polynomial in two variables $x^2 - l(z) \in \mathbb{C}[z, x]$ is irreducible because every divisor that is a polynomial in z is a constant. i.e., the affine plane curvature (21) is irreducible and its field of rational functions K is the field of fractions of the domain

\begin{equation}
A = \mathbb{C}[z, x]/(x^2 - l(z))\mathbb{C}[z, x].
\end{equation}

Let smooth projective model of (21) be C. Then K is the field $\mathbb{C}(C)$ of rational functions on C; in particular, $\mathbb{C}(C)$ is generated over \mathbb{C} by rational functions z, x. Let $\pi : C \to \mathbb{P}^1$ be the regular map clear by rational function z. It has a degree s. Since
\begin{equation}
\deg(\pi) = \deg(l) = \sum_{h \in G} d(h)j(h^{-1})
\end{equation}
is divisible by \(s\), the map \(\pi\) is unramified at \(\infty\) (see Rejêt *8M* Sect. 4)) and therefore the set of branch points of \(\pi\) coincides with the set of roots of \(l(z)\).

The disjoint union of the sets \(R_h\) of roots of \(l_h(z)\). In particular, the number of branch points of \(\pi\) is

\[
\sum_{h \in G} \text{deg } (l_h) = \sum_{h \in G} d(h) = \frac{2n}{s-1} + 2.
\]

\(\pi\) is a Galois cover of degree \(s\), i.e., the field extension.

\[
\mathbb{C}(C)/\mathbb{C}(\mathbb{P}^1) = \mathbb{C}(C)/\mathbb{C}(\mathbb{P}^1)
\]

is a cyclic field extension of degree \(s\). In addition, the cyclic Galois group \(Gc1(\mathbb{C}(C)/\mathbb{C}(\mathbb{P}^1))\) is generated by the automorphism \(\alpha_C : C \to C\) induced by \(\alpha_C : C \to C, (z, x) \mapsto (z, \omega_s x)\).

It follows from the Riemann-Hurwitz formula [8] that the genus of \(C\) is

\[
\frac{\left(\frac{2n}{s-1} + 2\right) - 2}{2}(s - 1) = n.
\]

In addition, the automorphism \(\alpha\) of the polarized jacobian \((J, \partial)\) induced by \(\alpha_C\) satisfies the \(s\)th cyclotomic equation

\[
\sum_{j=0}^{s-1} \alpha^j = 0 \text{ in End } (J)
\]

Suppose that the set of ramification points of \(\pi\) is \(B \subset C(\mathbb{C})\). \(B\) accords with the usual of static points of \(\alpha_C\). The map \(z : C(\mathbb{C}) \to \mathbb{P}^1(\mathbb{C})\) establishes a bijection between \(B\) and the disjoint union of all \(R_h\). Let us putting

\[
B_h = \{P \in B|z(P) \in R_h\}.
\]

Then \(B\) partitions onto a disjoint union of all \(B_h\)'s and

\[
\#(B_h) = \text{deg } (l_h) = d(h) \forall h \in G.
\]

Let \(P \in B\). The action of \(\alpha\) on the tangent space to \(C\) at \(P\) is multiplication by a certain \(p^{th}\) root of unity \(\varepsilon_p\). We observe and claim that \(\varepsilon_p = \omega_s^{j(h)}\) if \(P \in R_h\).

Indeed, we have

\[
z(P) = \psi \in R_h, x(P) = 0.
\]

Let

\[
ord_p : \mathbb{C}(C) \to \mathbb{Z}
\]

be the discrete valuation map attached to \(P\). Then one may easily check that

\[
ord_p(z - \psi) = s, ord_p(z - \xi) = 0 \forall \xi \in \mathbb{C}\setminus\psi.
\]

This implies that

\[
s \cdot j(h^{-1}) \cdot ord_p(z - \psi) = ord_p(x^s) = s \cdot ord_p(x)
\]
and therefore
\[\text{ord}_p(x) = j(h^{-1}) \quad (22) \]
In light of (5), there is an integer \(m \) such that
\[j(h^{-1}) \cdot j(h) = 1 + sm. \]
Combining this with (22), we obtain that
\[\text{ord}_p \left(\frac{x^{j(h)}}{(z - \psi)^m} \right) = j(h^{-1}) \cdot j(h) - sm = 1 \]
and therefore \(t = x^{j(h)}/(z - \psi)^m \) is a local parameter of \(C \) at \(P \). The action of \(\alpha \) multiplies \(t \) by \(\omega_z^{j(h)} \) and therefore \(\varepsilon_p = \omega_z^{j(h)} \), which proves the Claim.

Now the desired result follows from Proposition 1.11 applied to \(Z = J, \beta = \alpha \).

Example 3.2. Let \(s = 3 \). The number of admissible functions is \((n + 1)\).

Let us list all the possibilities for \(a \) when \(n \) are given. Let us identify
\[G = (\mathbb{Z}/3\mathbb{Z})^* = \{1 \text{mod } 3, 2 \text{mod } 3\} \]
with the set \(\{1, 2\} \) in an obvious way. We have the following conditions on \(d \).
\[d(1), d(2) \in \mathbb{Z}_+, d(1) + d(2) = n + 2, 3|d(1) + 2d(2)) \]
The congruence condition means that \(d(1) \equiv d(2) \text{mod } 3 \). So, the conditions on \(d \) are as follows.
\[d(1), d(2) \in \mathbb{Z}_+, d(1) + d(2) = n + 2, d(1) \equiv d(2) \text{mod } 3 \]
The list (and number) of corresponding \(a \) depends on \(n \text{mod } 3 \). Namely, there are the natural three cases.

(i) \(n \equiv 1 \text{mod } 3 \), i.e., \(n = 3p + 1 \) where \(p \) is a nonnegative integer. Then
\[d(1) + d(2) = n + 2 = 3p + 3 = 3(p + 1), \]
and therefore both \(d(1) \) and \(d(2) \) are divisible by 3. Hence there are exactly \((p + 2)\) options for \(d \), namely,
\[d(1) = 3b, d(2) = 3(p + 1 - b); b = 0, \ldots, (p + 1) \quad (23) \]
The corresponding \(a \) are as follows (where \(b = 0, \ldots, (p + 1) \)
\[c(2) = \frac{1}{3}(d(1) + 2d(2)) - 1 = b + 2 \cdot (p + 1 - b) - 1 \]
\[= b + 2(p + 1 - b) - 1 = (2p + 1) - b; \]
\[c(1) = \frac{1}{3}(2d(1) + d(2)) - 1 = 2b + (p + 1 - b) - 1 = p + b. \]
So, we get
\[c(1) = p + b, c(2) = (2p + 1) - b; b = 0, \ldots, p + 1. \]
The number of \(a \)’s is
\[p + 2 = \frac{n + 5}{3}. \]

(ii) \(n \equiv 2 \mod 3 \), i.e., \(n = 3p + 2 \). Then
\[
d(1) + d(2) = n + 2 = 3p + 4 = 3(p + 1) + 1,
\]
In above \(p \) is a non-negative integer and therefore both \(d(1) - 2 \) and \(d(2) - 2 \) are divisible by 3. Hence there are exactly \((p + 1)\) options for \(d \), namely,
\[
d(1) = 3b + 2, d(2) = 3(p - b) + 2; (b = 0, ..., p)
\]
The corresponding \(a \) are as follows (where \(b = 0, ..., p \)).
\[
c(2) = \frac{1}{3} (d(1) + 2d(2)) - 1 = b + 2(p - b) + 2 - 1 = (2p + 1) - b;
\]
\[
c(1) = \frac{1}{3} (2d(1) + d(2)) - 1 = 2b + (p - b) + 2 - 1 = (p + 1) + b = p + b.
\]
So, we get
\[
c(1) = (p + 1) + b, c(2) = (2p + 1) - b; b = 0, ..., p.
\]
The number of \(a \)'s is
\[
p + 1 = \frac{n + 1}{3}.
\]
(iii) \(n \equiv 0 \mod 3 \), i.e., \(n = 3p \). Then
\[
d(1) + d(2) = n + 2 = 3p + 2,
\]
In above \(p \) is a non-negative integer and therefore both \(d(1) - 1 \) and \(d(2) - 1 \) are divisible by 3. Hence there are exactly \((p + 1)\) options for \(d \), namely,
\[
d(1) = 3b + 1, d(2) = 3(p - b) + 1; (b = 0, ..., p)
\]
The corresponding \(a \) are as follows (where \(b = 0, ..., p \)).
\[
c(2) = \frac{1}{3} (d(1) + 2d(2)) - 1 = b + 2(p - b) + 1 - 1 = 2p - b;
\]
\[
c(1) = \frac{1}{3} (2d(1) + d(2)) - 1 = 2b + (p - b) + 1 - 1 = p + b.
\]
So, we get
\[
c(1) = p + b, c(2) = 2p - b; b = 0, ..., p. \tag{24}
\]
The number of \(a \)'s is
\[
p + 1 = \frac{n + 3}{3}. \tag{25}
\]
The above result shows that where \(p \) is a non-negative integer congruence condition are satisfies.

4. Conclusion
The Dynein network of \mathcal{L} can be used to represent the most periodic reduced subalgebras of a simple Lie algebra \mathcal{L}. Clearly, any such subalgebra arises as a semi simple Lie algebra with a Dynein diagram obtained by deleting one node from the Dynein circuit of \mathcal{L} with a mark equal to 1 direct sum and asymmetric subalgebra composed of the intersect of the husks of the remaining roots. Finally, the well-known constraints on the algebraic formulations of its action on first-order distinctions suggest that such polarized varieties are not Jacobians of curvatures.

References

46. E. Murugan and I. Pakrudheen, New amphiphilic poly (quaternary ammonium) dendrimer catalyst for

centralized key management scheme using quantum key distribution and classical symmetric encryption. The European Physical Journal Special Topics, 223(8), 1711-1728.

80. Singh, S., Khan, K., Sharma, S., Singh, L. (2014). In Vitro Assessment of Antimicrobial and...

82. Bhatt, H. V. D. V. Exploring The Various Factors Influencing The Readiness For The Organizational Changes At Work Place With Respect To Banking Sector Of Gujarat(2020).

87. Bhatt, V. G., & Trivedi, T. M. A Study On Job Satisfaction Of Bank Employees With Respect To Readiness To Change In Work Environment In Major Cities Of Gujarat.

125. J. Źywiołek and Nedeliakowa Eva, Analysis of the information security system when ordering furniture online, Sustainability of Forest-Based Industries in the Global Economy - Proceedings of Scientific Papers, 2020.

67-73.

166. HiralBorikar, M., & Bhatt, V. A Classification of Senior Personnel with Respect to Psychographic and Demographic Aspect of Workplace Stress in Financial Services, (2020).

171. Patel, I. H., & Bhatt, V. Classification Of Factors Affecting Overall Service Quality And Customer Satisfaction For Digital Banking Service In Ahmedabad. Complexity, 8, 0-899.

188. Akther, T. Corporate Environmental Reporting and Profitability: A Study on Listed Companies in Bangladesh; Jagannath University Journal of Business Studies; Vol. 5, No. 1 & 2 June 2017(99-104).
