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A B S T R A C T 

In this paper we have studied the linear time invariance quadratic optimal 
control problems with unknown coefficients. The linear time invariance 
problems were parameterized based on control-state parameterization 
technique such that the objective function and the constraints are in terms 
of state variables and control variables. These two methods were 
converting the linear time invariance quadratic optimal control problems 
into quadratic programming problems and the converted problems were 
solved using MATLAB. When we increase the order of polynomial (M), then 
the computational results of the proposed methods gave better results but 
when we compare these two methods, Legendre scaling function was better 
than Chebyshev scaling function with regard to optimal value. Hence, the 
Legendre scaling function method is more suitable for solving the linear 
time invariance quadratic optimal control problems.  
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1.INTRODUCTION 
 
Optimal control is a science that deals with linear and 
nonlinear optimal control problems (OCPs) and the main 
objective of optimal control is to determine control function 
that will the cause of a systems (plant) to satisfy the 
physical constraints and at the same time extremize 
(maximize or minimize) a performance criterion 
(performance index or cost function) [1]. Analytical 
solutions of optimal control problems are not always 
available, thus finding an approximate solution is at least 
the most logical way to solve them. By contrast, linear 
optimal control problems have readily computable 
solutions rather than nonlinear optimal control problems. 
Optimal control problems with linear time varying systems 
are much more difficult to solve in comparison with linear 
time invariance systems [2].  
The state variable (or function) is the set of variables 
(functions) used to describe the mathematical state of the 
system at a time t but according to [3] the value of state 
variable decreases when the time interval increases. The 
control variable (or function) is an operation that controls 
the recording, processing, or transmission of data at a time 
t but according to [6] the value of control variable increases 
when the time interval increases in the case of linear time 
invariant optimal control problems. The work of [5] 

presented the proof of multiplication of Legendre scaling 
function as well as the multiplication operational matrix 
which was used in the development of a computational 
method to the linear time-varying quadratic optimal 
control problems.  
[4] Were solving both linear time invariance and linear time 
varying optimal control problems using Chebyshev 
wavelet. [6] Finding the approximate solution of the 
optimal control of linear time invariant systems using the 
Legendre wavelets and the operational matrix of stretch is 
derived and together with the operational matrix 
integration has been used to change the system of state 
equations into a set of algebraic equations.  
  

2.METHODS 
Using Legendre scaling function and Chebyshev scaling 
function convert the linear time invariance quadratic 
optimal control problems into quadratic programming 
problems. Then the converted quadratic programming 
problems were solved using MATLAB and sketch the graph 
of the approximate value of state and control variables. 
Then compare Legendre scaling function and Chebyshev 
scaling function with regard to optimal value. 
 

3.CHEBYSHEV SCALING FUNCTION 

We will introduce the definition, basis of Chebyshev scaling 
function. This basis will be the basic of this paper in the 
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following section. Chebyshev scaling function is used to for 
approximate both state variables and control variables 
because the optimal solution of state variables and control 
variables are a function of time so it is better to use this 
function for quadratic optimal control problems and 
Chebyshev scaling function can be defined is as follows 

Ψnm(t) = {
αm2

(k−1)
2⁄

√π
Tm(2kt − 2n + 1),

n − 1

2k−1
≤ t ≤

n

2k−1
   (1)

0 ,       otherwise                             

 

 

where αm = { √2          , m = 0                      
2              ,   m = 1,2,3,…          

 

 

Here, Tm(t) are the Chebyshev polynomials of order m,  

T0(t) = 1, 

T1(t) = t, 

T2(t) = 2t2 − 1 

T3(t) = 4t3 − 3t 

Tm+1(t) = 2tTm(t) − Tm−1(t), m = 1, 2, 3, ….  (2) 

 
3.1. Operational Matrix of Integration (OMI) for 
Chebyshev Scaling Function 
Let P be an operational matrix of integration which is 
obtained from the integral of Chebyshev scaling function 
from 0 to t and these matrices play an important role to 
modeling the problems. According to [10], this matrix is 
used to change the system of state equations into a set of 
algebraic equations which can be solved using software. 
This is represented as follows: 

∫Ψ(τ)dτ = PΨ(t)

t

0

                                (3) 

Ψ(t) = [Ψ1m(t),Ψ2m(t),Ψ3m(t),… ,Ψ2k−1m(t)]T 

So the matrix P is the cofficent of Ψ(t)   

                                 P = [
C S
O C

]       

where P is a (2K−1(M + 1) × 2K−1(M + 1))  

operational matrix of integration and O, C, S are (M +

1) × (M + 1)  matrices and give 

                                    

S=
√2

2K−1

[
 
 
 
 
 
 
 
 

1

√2
0 0 ⋯ 0

0 0 0 ⋯ 0
−1

3
0 0 ⋯ 0

0 0 0 ⋯ 0
−1

15
0 0 ⋯ 0

⋮ ⋮ ⋮ ⋱ 0
−1

M(M−2)
0 0 ⋯ 0]

 
 
 
 
 
 
 
 

  

C

=
1

2k−1

[
 
 
 
 
 
 
 
 
 
 
 
 

1

2

1

2√2
0 0 ⋯ 0 0 0

−1

4√2
0

1

8
0 ⋯ 0 0 0

−1

3√2

−1

4
0

1

12
⋯ 0 0 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋱ ⋱ 0
−1

2√2(M − 1)(M − 3)
0 0 0 ⋯

−1

4(M − 3)
0

−1

4(M − 1)

−1

2√2M(M − 2)
0 0 0 ⋯ 0

−1

4(M − 2)
0

]
 
 
 
 
 
 
 
 
 
 
 
 

 

 
O is matrix that all entire elements are zeros 
3.2. Continuity Test of Chebyshev Scaling Function 
To insure the continuity of the state variables between the 
different sections so we must add constraints. There are 
2k−1 − 1 points at which the continuity of the state 
variables has to ensure.  These points are  

      ti =
i

2k−1
      , i = 1, 2, … , 2K−1 − 1      

In addition, there is (2K−1 − 1)s  equality constraints can be 
given as follows 

            (Is⨂Φ′)a = o(2K−1−1)s×1
                             (4) 

However, the dimension of continuity matrix Φ′ or ensured 

constraints is (2K−1 − 1) × 2K−1(M + 1). 

4. LEGENDRE SCALING FUNCTION 

In this section, we will introduce the definition, basis of 
Legendre scaling function. This basis will be the basic of this 
paper in the following section. Legendre scaling function is 
used to approximate both state variables and control 
variables. Legendre scaling function can be defined as 
follows. 
     Φnm(t)

= {√m +
1

2
2

K
2⁄ Pm(2Kt − 2n + 1) ,   for 

2n − 2

2K
≤ t ≤

2n

2K

0 ,               Otherwise

   (5) 

 
where Pm is the Legendre polynomial of order m; n refers to 
the section of time interval,   
n = 1, 2, … ,  2K−1; K is the scaling parameter and can 
assume any positive integer and  
t ∈ [0,1]. From this the Legendre polynomial can be given 

                  Pm(t) =
1

2mm!

dm

dtm
(t2 − 1)m          (6) 

P0(t) = 1 

P1(t) = t 

P2(t) =
1

2
(3t2 − 1) 

P3(x) =
1

2
(5t3 − 3t) 
.
.
.
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4.1. Operational Matrix of Integration (OMI) for 
Legendre Scaling Function 
Let P be an operational matrix of integration which is 
obtained from the integral of Legendre scaling function 
from 0 to t and these matrices play an important role to 
modeling the problems. According to [7] this is used to 
change the system of state equations into a set of algebraic 
equations which can be solved using software.  This is 
represented as follows: 

∫Φ(τ)dτ = PΦ(t)

t

0

         (7) 

where Φ(t) =

[Φ10(t)  Φ11(t) … Φ1M(t)  Φ20(t) …Φ2M  Φ2K−10 … Φ2K−1M(t)]
T
. 

and   P is called the cofficent matrix of Φ(t) 

                                      P =
1

2K [
D U
O D

]                 

where P is a (2K−1(M + 1) × 2K−1(M + 1))  operational 
matrix of integration and  O, D, U are (M + 1) × (M + 1) 
matrices and given by   

U =  [

2 0 0 … 0
0 0 0 … 0
⋮
0

⋮
0

⋮ ⋮ ⋮
0 0 0

] 

 
 
D =

[
 
 
 
 
 
 
 
 
 
 1

1

√3
0 0 ⋯ 0 0 0

−1

√3
0

1

√15
0 ⋯ 0 0 0

0
−1

√15
0

1

√35
⋯ 0 0 0

0 0
−1

√35
0 ⋱ ⋱ ⋱ 0

⋮ ⋮ ⋮ ⋮ ⋯
−1

√4M2−16M+15

0
0

1

√4M2−8M+3

0 0 0 0 ⋯ 0
−1

√4M2−8M+3
0 ]

 
 
 
 
 
 
 
 
 
 

  

 
 
O is matrix that all entire elements are zeros. 
 Note: The integration of multiplication of Legendre scaling 
function and its transpose in the interval t ∈ [0,1] is equal 
to identity matrix since Legendre scaling functions are 
orthonormal is as follows. 

                              ∫ Φ(t)ΦT(t)

1

0

dt = IN                           (8)  

where  IN, is identity matrix of dimension N, (N =
2K−1(M + 1)). 

 
4.2. Continuity Test of Legendre Scaling Function  
Scaling functions are not supported on whole interval  a ≤
x < 𝑏; so these functions divide the interval of interest to 
number of sections depending on the value of scaling 
parameter K; for this reasons we have to add additional 
constraints to ensure the continuity of the state variables 

between different sections. There are 2K−1 − 1 points at 
which the continuity of state variables. 

               ti =
i

2K−1
      , i = 1, 2, … , 2K−1 − 1         

In addition, there is dimension of 
equality constraints is (2K−1 − 1)s  can be given as follows 

(Is⨂Φ′)a = o(2K−1−1)s×1
                           (9) 

where Φ′ is continuity matrix 
 However, the dimension of matrix of continuity ensured 

constraints is (2K−1 − 1) × (2K−1(M + 1)). 
 
 
5.LINEAR TIME VARYING QUADRATIC OPTIMAL 
CONTROL PROBLEM 
Before approximating the states variable and control 

variable, it is necessary to transform the time in the optimal 

control problem t ∈ [t0, tf]  into the interval τ ∈ [0,1]; 

because Legendre scaling function [8] and Chebyshev 

scaling function [4] are defined on the interval τ ∈ [0,1]. 

Then the transformed optimal control problem is  

           min J = tf ∫(xT(t)Qx(t) + uT(t)Ru(t))dτ               (10)

1

0

 

subject to     
dx(t)

dτ
= tf(Ax(t) + Bu(t))                               

5.1. Approximation of State and Control Variable Using 
Legendre and Chebyshev Scaling Function 
The approximation of state variables and control variables 

for the problem of linear time varying quadratic optimal 

control problems with linear constraint using Legendre and 

Chebyshev scaling function is as follows 

xi(t) = ∑ ∑ ai
nmΦnm(t)  ,    where     i = 1, 2, 3 , … , s       

M

m=0

2k−1

n=1

 

ui(t) = ∑ ∑ bi
nmΦnm(t)   , where      i = 1, 2, 3, … , r 

M

m=0

2k−1

n=1

 

These equations can be expanding to 

x(t) = a10  Φ10(t)+a11  Φ11(t)

+ ⋯+a1M  Φ1M(t) … 

+ ⋯ a2K−10Φ2K−10(t)

+ ⋯+a2K−1MΦ2K−1M(t) 

u(t) = b10  Φ10(t)+b11  Φ11(t)

+ ⋯+b1M  Φ1M(t) … 

+ ⋯ b2K−10Φ2K−10(t)

+ ⋯+b2K−1MΦ2K−1M(t) 

These equations can be written in compact form are 

    x(t) = (Is⨂ΦT(t))a

     u(t) = (Ir⨂ΦT(t))b
                   }         (11) 

where Is and Ir are sxs and  rxr identity matrices  respectively  

and Φ(t)is N × 1, 

    N = 2K−1(M + 1) 

Vector of Legendre scaling function and unknown 

coefficients are given by: 
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Φ(t)

= [Φ10(t)   Φ11(t)…Φ1M(t)   Φ20(t)
…Φ2M …   

Φ 2K−10
(t)…Φ2K−1M(t)]𝑇 

a = [a10  a11  a12  …  a1M a20  … a2M …  a2K−10  …   a2K−1M  
]𝑇 

            and          

b = [b10  b11  b12  …  b1M b20  …b2M …  b2K−10  …   b2K−1M  
]𝑇 

where a and b are vectors of unknown coefficients of 

dimension sN × 1 and rN × 1.  

5.2. Approximation of Performance Index via Legendre 
and Chebyshev Scaling Function 
We can approximate the performance index of linear time 

quadratic optimal control problems using Legendre and 

Chebyshev scaling function, substitute equations (11) into 

the objective function.  We get 

    J =
1

2
∫aT(Φ(t)⨂Is)Q(Is⨂ΦT(t))a

1

0

+ bT(Φ(t)⨂Ir)R(Ir⨂ΦT(t))b dt     (12) 

By applying equation (8), we get the equation (12) and we 

can simplify this equation. We get  

  J =
1

2
(aT(IN⨂Q)a + bT(IN⨂R)b)                         (13) 

Moreover, equation (13) can be written in quadratic form 

is as follows 

J = [aT bT] [
IN⨂Q ONs×Nr

ONr×Ns IN⨂R
] [

a
b
]                           (14)  

We can construct the quadratic form of linear time 

invariance optimal problems from the integration of state 

equation can be rewritten using Legendre and Chebyshev 

scaling function with operational matrix of integration, and 

unknown coefficients to be easily solved using MATLAB in 

the following form. 

Now we can express the state equations in terms of the 

unknown parameters of the state variables and the control 

variables, state equation can be integrated as 

From the integration of state equation can be rewritten 

using operational matrix of integration and unknown 

coefficients in the following form. 

     [(A⨂PT) − INs (B⨂PT)] [
a
b
] = −g0δ                  (15) 

where δ =
√2

2
K

2⁄
 , A is an n× n matrix and B is an n× m  are 

the coefficient matrices of state variable and control 

variable from the state equation respectively, g0 is the 

initial column vector, P is operational matrix of integration 

with the dimension of  2K−1(M + 1),  INs is identity matrix 

with the dimension of 2K−1(M + 1) and a, b are unknown 

coefficients. 

By combining equations (9) and (15), we get the following 

form of equality constraints  

           [
(A⨂PT) − INs (B⨂PT)

Is⨂Φ′ o(2K−1−1)s×Nr

] [
a
b
]

= [
−g0δ

o(2K−1−1)s×1

]                (16) 

Then compact quadratic form is as follows: 

               minz   z
THz 

              Subject to         Fz = h  
                    }    (17)                                                                                      

                                              where,    z = [
a
b
] 

H = [
RR⨂Q ONs×Nr

ONr×Ns RR⨂R
] 

F = [
(A⨂PT) − INs (B⨂PT)

(Is⨂Φ′) o(2K−1−1)s×Nr

] 

h = [
−g0δ

o(2K−1−1)
s×1

] 

The general steps to approximate state, control variable 

and performance indices using Legendre and Chebyshev 

scaling function with unknown coefficients of a and b. 

Step (1): Define the unknown coefficients of state and 

control variables according to K and M. The unknown 

coefficients will be as follows. 

a = [a10  a11 … a1M  a20  a21 …a2M …  a2K−10 …a2K−1M  ]𝑇  

b = [b10   b11 … b1M  b20  b21 …  b2M … b2K−10 … b2K−1M  ]𝑇  

Step (2): Generate the scaling function depending on K and 

M. 
Φ(t)

= [Φ10(t)   Φ11(t)…  Φ1M(t)  Φ20(t)  Φ21(t)…  Φ2M(t)…  Φ2K−10(t)…    Φ2K−1M(t)]T 

Step (3): Approximate the state and control variables. 

x(t) = ∑ ∑ anmΦnm

M

m=0

2K−1

n=1

  

u(t) = ∑ ∑ bnmΦnm

M

m=0

2K−1

n=1

 

Step (4): Find the vector of initial condition 

δ =
√2

2
K

2⁄
  and δ =

√
π
2

2
(K−1)

2⁄
 ,

ξ0 = [xi(0) 0 0… 0 |xi(0) 0 0… 0]T 

Step (5): Find the points of ensured continuity and the 

continuity matrix. 

Φ′

= [Φ10(ti)…  Φ1M(ti) Φ20(ti) …  Φ2M(ti)…   Φ2K−10(ti)…    Φ2K−1M(ti)] 

      where ti =
i

2K−1 , i=1, 2, 3, . . ., 2K−1 − 1 

Step (6): Determine the quadratic programming problems. 

Step (7): Solve the quadratic programming problem or 

equation (17) using MATLAB. 

Example  

Find the optimal control u∗(t) and state variable x∗(t) 

which minimize the performance index. 

min   J =
1

2
∫(x2(t) + u2(t))dt

1

0

 

   Subject to x′(t) = −x(t) + u(t),    x(0) = 1 
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Figure 1. The approximation of state and control variable 

using Legendre scaling function 

 
Figure 2. The approximation of state and control variable 

using Chebyshev scaling function 

The approximation value of state variable and control 

variable in the linear time invariant system, were presented 

in Figure 1 and Figure 2 using Legendre scaling function 

and Chebyshev scaling function respectively. We have 

considered parameter values K=2, with polynomial of 

degree three. We observed that as the time interval, t ∈

(0, 1) the value of state variable decreases and control 

variable increases. MATLAB is used to plot the graphs to 

show the best result of problems. The graphs represent the 

best approximation at each system and the best value of 

state and control variable by the run considering numerical 

results of the solutions are shown in Figure 1and Figure 2. 

Table 1. A comparison between Legendre and Chebyshev 
scaling function with the approximations of performance 
index of example 

                    Optimal value [9]          

0.1929092

981  

 

Order 

of 

poly 

Performance index (J)  

Legendre Error Chebyshev Error 

M=1 

 

M=2 

 

 

M=3 

0.194179279

497372 

0.192998674

286855 

  

1.27×

10−3 

  

8.94×

10−5 

0.1963332

44960920 

3.42×

10−3 

0.1930009

89090520 

9.17×

10−5 

0.192909322

011399 

   

2.39×

10−8 

0.1929341

30143056 

2.48×

10−5 

 

This example solved by using Legendre scaling function and 

Chebyshev scaling function. As M=1 to M=3 the 

approximation value is approaching to the optimal value 

obtained by [9]. From this table we conclude that Legendre 

scaling function is better than Chebyshev scaling function.  

CONCLUSION  
In this paper, we proposed numerical methods to solve 

linear time invariance quadratic optimal control problem 

by using Legendre and Chebyshev scaling function 

methods. Applying these methods, the linear time quadratic 

optimal control problem was converted into quadratic 

programming problem with in unknown coefficients and 

known scaling function and it has solved the quadratic 

programming problem using MATLAB. Furthermore, the 

proposed methods could be easily implemented in a 

MATLAB. The results obtained for the linear time optimal 

control systems with quadratic performance index using 

Legendre and Chebyshev scaling functions works for 

finding the approximation values of the state variable x(t), 

the control variable u(t) and performance indices. It was 

also deduced that the polynomial of scaling function with 

degree three and the time interval t ∈ [0,1], the absolute 

error is less (almost zero) with the Legendre scaling 

functions than with the Chebyshev scaling functions 

method. Hence, the Legendre scaling function method is 

more suitable for solving the linear time invariance 

quadratic optimal control problem. 
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