IMPROVING SUPPORT FOR THE PROCESS OF THE THERMAL CONVECTION PROCESS BY INSTALLING REFLECTIVE PANELS IN EXISTING RADIATORS IN PLACES

Abdurazakov Axmadullo Muxammadovich, Musajonov Muhammadsul Alisher ugli
Ferghana Polytechnic Institute, Ferghana, 86 Ferghana str., 150107, Uzbekistan
Ahmed10866088@gmail.com

Abstract
In this article, we will have the installation of light reflections used to increase the efficiency of radiators, and thus, the problems of increasing heat to heat, the heat exchange is analyzed through the walls.

Article history:
Received 19 Oct 2022
Revised form 18 Nov 2022
Accepted 21 Dec 2022

Key words: Radiators, Installing Reflective.

Introduction
In this article, the installation of the radiator and the outer wall in the reverse side of the chain increases. X-ray radiographs do not work correctly only in the source only for thermal coolant to increase the efficiency of thermal thermal carrier to increase the efficiency of radiators, convection heat in the radiator. The flow is an amplitude and a decrease in losing warm stream from the radiator.

According to the laws of energy conservation, the heat of hot water to the radiator must be transferred to a complete connection, which is clearly targeted equipment requires more energy to transmit heat level. It is advisable to reduce and develop the wall area of the wall area, which prevents most of the energy issued, the search and development of optimal radiators. Despite the change in the shape of the radiators, the main heat exchange is convection.

Main Body
An increase in the radiator to an increase in heat capacity, as well as a decrease in the distance to the radiator, as well as the growing distance from the wall to the radiator can also increase thermal power by reducing. [1] Radiators can several times the ability to give convection heat through the setting of the number of edges. The most common methods, leaving the bottom of the air, moving heat from the bottom of the cold air through convection or air holes through convection or air holes through convection or air holes.
Fig 1. Conversion of convection, which is formed as a result of the installation of heating radiators

Normal water type is widely used in public buildings, industrial enterprises. With this, we also observe convection of various metal panels, as well as windows, convection in the room. Creates an action and increases the ability of heat dissipation. [2]

By increasing the convection thermal transmission process, the radiator is returned by installing metal light, persists through the installation of metal light, and the permeability of the outer wall will have a bilateral effect in increasing heat resistance. So, therefore, the overall interaction is intensified.

Fig 2. The heat exchange process between parallel surfaces and light plates

In a stable state, if two surface surfaces can be expressed by the power of the radiator (for a square meter) as follows: [3.4]

\[
q_{12} = \sigma_0 \frac{1}{a_1 + a_2 - 1} \left(T_1^4 - T_2^4 \right)
\]

(1)

Here:

\(\sigma_0 = \text{Stephan-boltsman performed.} \) The radiating wall wall and heat dissipation shows that the set of a reflective layer.

\[
q_{1s} = \sigma_0 \frac{1}{a_1 + a_s - 1} \left(T_1^4 - T_s^4 \right)
\]

(2)

\[
q_{s2} = \sigma_0 \frac{1}{a_s + a_2 - 1} \left(T_s^4 - T_2^4 \right)
\]

(3)

\(Q_{1s} = \text{Primary radiation power [WT} \cdot M^2\text{]} \) RADIA DOWN (1) on the screen surface (s).

\(Q_{s2} = \text{Primary radiation power [WT} \cdot M^2\text{]} \) from the screen surface to the wall surface (2).

\(T_S = \text{Temperature [K]} \) Surface S (Wall).

The overall light swallowing as = s (screen) swallows the overall light.

Conclusions

When installing the effect on heat in heat transfer between radiators and outer walls, radiation between thermal and air between the inner surface, the outer wall and air, the same together with the same equations
that characterize the heat exchange. It can be said that the conclusions improve the thermal convection process by establishing the outer wall.

Reference

33. Рашидов, Ю. К., Исмоилов, М. М., Орзиматов, Ж. Т., Рашидов, К. Ю., & Каршиев, Ш. Ш. (2019). Повышение эффективности плоских солнечных коллекторов в системах теплоснабжения путём оптимизации их режимных параметров. На Экологическая, промышленная и энергетическая безопасность-2019 (pp. 1366-1371).
