An Authenticated Vehicle Owner Identification System Based on License Plate Readers

Steffi. R
Assistant Professor, Department of Electronics and Communication, Vins Christian College of Engineering, Tamil Nadu, India.

S. Suman Rajest
Professor, Bharath Institute of Higher Education and Research, Chennai, Tamil Nadu, India.

R. Regin*
Assistant Professor, Department of Computer Science and Engineering, SRM Institute of Science and Technology, Ramapuram, India. regin12006@yahoo.co.in

Shynu T
Master of Engineering, Department of Biomedical Engineering, Agni College of Technology, Chennai, Tamil Nadu, India.

Annotation
The Vehicle Number Plate Recognition System relies heavily on Automatic Number Plate Recognition (ANPR), which stands for Automatic Number Plate Reading. The License Plate Recognition System is a trustworthy system that offers an effective and efficient technology management solution for automobiles. Theft of vehicles, violations of traffic laws, and intrusions into prohibited areas are all on the rise, which is why number plate recognition is being implemented to combat these illegal behaviours. Tollgates, parking lots, and other public spaces often use a technology called number plate recognition. This effort intends to restrict and limit the use of stolen automobiles as much as possible. First, a picture of the licence plate should be taken and stored. Image Processing and an ML kit are used to process the acquired picture once it has been taken. After the image has been analysed, the system will show information regarding the purpose for which the vehicle was designed as its output.

© 2023 Hosting by Central Asian Studies. All rights reserved.
Introduction

In India, a registration or licence number is affixed to the windshield of every motorised vehicle that is driven on public roads. The district-level Regional Transport Office (RTO) of different states is the primary authority on road problems [1]. This office is responsible for issuing the number that appears on the vehicle registration plate, which is also generally known as the number plate. Both the front and the back of the car are where the licence plates are mounted [2-4]. By legislation, all of the plates have to use contemporary Hindu-Arabic numerals along with Latin characters. Other requirements include illuminating the plate at night and imposing limitations on the types of fonts that can be used [5]. Vehicle Number Plate Identification (VNPI), which is a subset of Digital Image Processing, is a method that classifies automobiles according to their licence plates [6-11]. Numerous applications need the use of number plate recognition systems, including the management of traffic, the recovery of stolen vehicles, the collection of automatic electronic tolls, and other similar applications. In order to put the VNPI system into action, a great number of plate detections and segmentation algorithms have been suggested. For instance, "IND" is the worldwide code for the registration of vehicles in India [12-15].

Recognition that is both beneficial and effective will result from the number plates being segmented in a manner that is both accurate and efficient [16-21]. The thievery of cars, which began from the early stages of vehicle development and are utilised in a variety of day-to-day goods, is the focus of the proposed control system. The licence plate would be scanned under the system that we have proposed [22]. The digitised licence plate is then subjected to processing by means of Image Processing and ML Kit algorithms. The outcome is determined based on whether or not the scanned licence plate has any data that is compatible with the database for that plate [23-27]. Image processing refers to the process of carrying out a series of procedures on an image in order to derive some information that is of use from it [28-31]. The goal of image processing is to perform various operations on the obtained image, such as gathering and analysing information in order to gain a better understanding of users and trends in general [32]. An image is a function with the dimensions x and y, where x and y are the spatial coordinates of the image. Image Processing, also known as Digital Image, is made up of a limited number of parts, all of which have a certain value at a specific point in the image [33]. Image Processing is sometimes referred to as Digital Image [34-39]. These elements are called picture elements, image elements, and pixels [40]. The most common way to refer to the components that make up a digital image is with the term "pixel [41-47]."

The processing of digital photographs could be described as a multidimensional system due to the fact that images are specified over at least two dimensions, and possibly more [48]. The generation of digital image processing is primarily affected by three factors: first, the development of computers; second, the development of mathematics (especially the creation and improvement of discrete mathematics theory); and third, the demand for a wide range of applications in the environment, agriculture, military, industry, and medical science has increased [49-57]. These factors are listed in this order [58]. The field of digital image processing includes a wide variety of applications, including remote sensing through the use of satellites and other spacecraft, image transmission, medical processing, radar, automated inspection of industrial parts, and acoustic image processing, to name a few. Processing an image while it is in its digital form is referred to as digital image processing [59-60]. Images were often created in optical form first, however some modern cameras are capable of taking the picture straight in digital format [61-64]. They are recorded by video cameras and then converted to digital format [65-72]. Image enhancement, image restoration, image analysis, image compression, and image synthesis are the various approaches that are utilised in image processing [73-79]. Image acquisition, also known as the act of collecting an image using an image sensor and displaying it, is the first step in the process, as shown in the flowchart [80-86]. The subsequent step is known as the pre-processing
stage, and it is at this step that the image is improved so that it can be used as input for the subsequent steps [87-92]. Enhancing, reducing noise, separating regions, and other similar tasks are often dealt with during pre-processing. Segmentation separates an image into its basic pieces [93-101]. Typically, the result of segmentation is raw pixel data, which consists of either the boundary of the region or the pixels that are actually contained within the region themselves. The act of translating the raw pixel data into a form that is suitable for later processing by the computer is referred to as "representation [102]." The process of description involves isolating fundamental characteristics that help differentiate one category of items from another [103-111]. A label is given to an object through the process of recognition, and this label is determined by the information that is provided by the object's descriptors. The act of interpreting anything includes giving a meaning to a collection of things that are already known. The knowledge base is updated with the new information regarding a particular problem domain [112-119]. The knowledge base is responsible for directing the functioning of each processing module and for controlling the interaction between the modules. The application determines the specific components that are included in the image processing system. Image processors typically operate at a frame rate of anywhere between 25 and 30 frames per second [120].

Automatic number-plate recognition, often known as ANPR, is a technique that reads car registration plates by employing optical character recognition on photographs of the plates [121-125]. This allows for the creation of vehicle location data. It may make use of existing closed-circuit television, cameras installed for the purpose of enforcing road rules, or cameras that have been specifically created for the job [126-131]. ANPR is utilised by law enforcement agencies all around the world for a variety of law enforcement objectives, including checking to see if a vehicle is licenced or registered. It is also used for the electronic collection of tolls on highways that operate on a pay-per-use basis, as well as a technique of cataloguing the movements of traffic, for instance by transportation agencies [132-137]. The pictures taken by the cameras and the text from the licence plate can be saved with the use of an automatic number-plate recognition system. Some of these systems also have the capability to save a picture of the driver. It is usual practise for systems to include infrared lighting, which enables the camera to capture an image at any time of day or night [138]. Concerns regarding privacy have been raised in relation to ANPR, including the possibility of the government tracking the movements of citizens, misidentification, high error rates, and increased government expense [139-145].

A number of people have referred to it as a type of broad-scale surveillance. The vehicle number plate detection and recognition system is used to detect the plates and then make the plate recognition, which is to extract the text from an image [146-152]. This system is utilised in a variety of fields, including traffic control, parking administration, and command forces, amongst others (like vehicles theft) [153-159].

This project addresses the challenge of reducing the number of vehicles that are stolen by locating the owner of each stolen car [160-165]. A picture of the vehicle is taken, and various pre-processing procedures are carried out on it with the help of a Raspberry PI. This allows for the automatic recognition of the licence plate, which can then be used in the Open CV platform [166-171]. In order to get an accurate reading of the distance, an ultrasonic sensor is utilised. In this section, the algorithm selects 90 patterns to test under a variety of circumstances [172-176]. A fresh technique for producing a repeatable pattern is presented here, and it will be applied to each image [177-181]. The template matching algorithm is used to determine the pattern matches with other patterns that are present. This technique is based on a combined model for the extraction of features and BPNN [182-185]. Nevertheless, the system that was in place at the time provided results that were typically less effective and required more time. When it comes to producing output in a manner that is both effective and efficient, the proposed model is evaluated against the conventional method [186-191]. Finding out who the owner of each car is will help this strategy achieve its goal of reducing the number of automobiles that are stolen. In this work, Detecting and Recognizing Number plates is produced and designed using Image Processing and ML kit techniques to acquire vehicle information of the relevant user. The goal of this work is
to improve road safety [192-193]. The most important effect of this effort is the information that was gathered about the user's vehicle, and it also plays a role in reducing the number of instances of vehicle theft [194]. The placement of a number plate on a car is an extremely important step in the process of determining who the owner of the vehicle is. For the purpose of moving on with the task that we have proposed, the literature has examined a great number of works that are connected to this concept [195]. Numerous research publications have contributed their strategies and procedures in order to provide a more effective search for all of the possible outcomes. The well-known methods, specifically Artificial Neural Networks, were dissected in terms of how they may be combined with one another [196]. The new method was developed to control traffic surveillance, such as parking vehicles in designated parking places. It demonstrated how the method may be conveyed to the user by visually walking them through the process while allowing them full control over the entire procedure [197]. In addition, as its output, it provides the result of the vehicles that have been parked in locations that are designated as No Parking [198]. The fact that computers may "learn" to execute tasks by looking at examples and, in most cases, without being programmed with task-specific rules is one of the advantages of artificial neural networks. Other advantages include:

Using Neural Network, a novel approach was demonstrated that enables the system to automatically learn without the need for programming and also guides the user in the process of involving fines. The results of the experiments demonstrated that the methodology has substantially surpassed the initial performance and competes with the conventional relevant feedback approaches in terms of its overall efficacy [199]. It is possible to miss some of the details, such as the fact that there are no appropriate data sets provided. Because of its low resolution and the fact that it does not stand out, this particular system has inadequate training in the acquisition of photographs. Therefore, there is neither a sudden nor a significant shift in the order of the documents. Nevertheless, this process does not explain the rationale behind selecting the specific document. To successfully capture the image and give individualised relative data, a method that is both efficient and effective is required. The fact that the relevant user vehicles are observed when the traffic regulations are being infringed is something that isn't taken into consideration, though. Second, an accurate data set that incorporates real-time scenarios is being employed, and it is being merged so that it can be viewed alongside the relevant user's prior records.

Number Plate Detection should be able to gather information about the car's owner since the rate of vehicle theft continues to rapidly climb. The system was designed with the ANPR methodology in mind, and it was implemented on an Open CV platform utilising Raspberry PI. In this case, the system used a Template matching approach, which involves extracting 90 patterns from the image and testing them in a variety of contexts. Nevertheless, the product that this method provides is less effective and it takes a lot of time. The past records of the user in question could not be obtained in an accurate manner due to the faulty data set, which is one of the points that will be ignored.

In order to enhance the speed with which user data could be retrieved, recognition systems were utilised. In order to accomplish this, Gabor filtering was utilised for the purpose of character recognition, and the result was a grayscale image. The effectiveness of retrieval was increased, which was one of the many good characteristics. According to the findings of the experiments, the precision achieved with the use of Gabor filtering was noticeably superior. It is easy to miss a few points, such as the fact that the findings of the experiment are only applicable to a certain number of vehicles and that the output efficiency is lower. Therefore, it is possible that it cannot be utilised efficiently in a variety of contexts. The findings of the experiments suggested that unwanted illumination might be eliminated without the use of filtration in order to improve image quality. The fact that several photos are being collected and checked across a limited number of steps is one of the process's advantages. Additionally, it accelerates the process by which the image is transformed via
morphing techniques. The aspects that are going to be ignored require minimal time commitment, and the output efficiency is spot on.

In particular, the image that was collected is constructed and then divided into a number of layers. This method, on the other hand, required a lot of time, and the resulting image set contained errors because of the low resolution. The creation of user profiles did not occur until after the image of the licence plate had been obtained. The profiles were reordered based on the results of the preference poll. The fact that user profiles were organised in a numbered list is one of the many excellent characteristics. The output results demonstrated a 20 percent rise in the quality of the image that was taken. When examining the results, the photograph that was captured can prove to be more effective. A low resolution in the captured image as a result of insufficiently lighted lighting circumstances is one of the aspects that are susceptible to being ignored. In this situation, not only is it difficult to identify the entries belonging to a specific user, but the output image that is obtained is also less efficient. When compared to the other available options, the procedure that was investigated was successful, and the output that was expected was accurate. The method primarily consisted of two steps: the first step was to find the licence plate, and the second step was to break up all of the numbers and letters in order to identify each number on each plate individually. It was demonstrated that implementing this method delivers results that are comparable to the output forecast made for it.

The goal of the effort was to have a better understanding of how the letters and numbers that are present on the number plate are split so that they may be retrieved more easily. It investigates if the segmentation process may be beneficial in the present reality circumstances, which tend to result in captured images that are noisy or fuzzy, and it does so by exploring whether the method can be helpful. In the end, various methods of segmentation are obtained and fine-tuned through the use of filtration techniques to the real-time images. It is interesting to note that the resulting image has an output efficiency of roughly 30 percent of its original image. Furthermore, filtration is not being used or described in order to incorporate the segmentation process. Improving the scope of study done to forecast the outcome is a necessary step.

The proposed method demonstrated several advantages over more conventional approaches, including the ones listed below. The image that was recorded was divided such that each character and number could be seen individually. The noise or blur in the image that was obtained was removed with the help of several filtration procedures, which were applied using this segmented image. It is necessary to build a reliable process in order to apply the corrected image that was derived from the primary image. Due to the fact that the primary problems in the original image are typically noisy or fuzzy, the output that was acquired and anticipated was only 55% accurate in comparison to the other possible measurements. It is possible to make it better by applying segmentation and filtration in an efficient and accurate manner. This technique is utilised in a wide variety of applications, including traffic control, parking management, the collection of parking fees, border crossings, and the location of stolen vehicles, amongst other uses.

Image processing, raw locating of the plate, and exact finding were the primary focuses of the procedure. Image processing was also an important component. The original colour image was transformed into a grayscale format during the image processing, which was necessary for the licence plate position. The original image was kept and utilised for the colour mapping process before the image was processed. Using edge detection, we searched the image for rectangular forms and located the plate region roughly based on the shape of the rectangle. This helped us cut down the time interval significantly. The RGB space on the map was first converted into the yellow bottom space via colour mapping, and then it was changed into the black bottom space. The area was evaluated using approximately 150 photographs, and the results showed that it had just a 60% output rate.

The system was broken up into three different components: the LP image localization component, the Character segmentation component, and the Character Recognition component. For the purpose of recognising and
locating number plates, the system used a Radial Basis Function Neural Network as its primary mode of operation. This survey makes use of some of the most well-known and reliable methodologies currently available in order to make an accurate prediction of the production efficiency of about 70 percent. The LPR method had two primary parts, which were locating and identifying the number plate on the vehicle. A significant amount of progress has been made in the many techniques that have been offered, which is one of the good elements. As these technologies advance, there may be a shift away from straightforward procedures toward more abstract conceptualizations. However, some of the aspects that should not be neglected include the fact that it merely conducts surveys of all approaches and does not suggest a new method. The fact that it is a laborious and time-consuming process is one of the aspects that should be ignored.

Despite the fact that numerous research have been published in the academic literature with the goal of enhancing licence plate identification, there is still room for improvement in this area provided that the appropriate data set is used. Automatic Number Plate Recognition, also known as ANPR, is a technique that reads car registration plates by applying optical character recognition (OCR) to photographs of the plates. This allows for the creation of vehicle location data. It may make use of existing closed-circuit television, cameras installed for the purpose of enforcing road rules, or cameras that have been specifically created for the job. The vehicle number plate detection and recognition system is used to detect the plates, and then make plate recognition late to extract the text from a picture. This system is utilised in a variety of fields, including traffic control, parking administration, and command and control (like vehicles theft).

Problem Statement

It is vital to locate the person who is going to utilise the relevant car, also known as the owner, and offer the necessary solution. There are several circumstances in which it is challenging to accomplish the results. The challenge is solved by the model that was proposed; it does this by determining the intended usage by displaying the details of each component. It does this by retrieving the findings that were generated by the users through Image Processing and ML Kit. Taking a picture of the licence plate number. The dimensionality of the image that was collected is the primary focus of the image processing, which is followed by additional processing using an ML kit. Using the idea of image processing, the system determines whether or not the image that was captured is identical to the entries that are stored in the database. Image processing refers to the process of carrying out a series of procedures on an image in order to derive some information that is of use from it. The findings are retrieved as the implementation is carried out throughout the process. The outcomes that were observed have been shown to be correct. The proposed system's goal is to reduce the amount of car theft that occurs by identifying the individual who is legally entitled to drive a given vehicle, sometimes known as the vehicle's owner. The proposed system can be realised using the notion of image processing and machine learning kit; in addition, it eliminates the challenges associated with locating the solution when compared to the approaches that have come before it. Android Studio is without a doubt the most essential tool for the overall system development process. The structure of the system is designed in such a way that both the user interface and the user experience are significantly improved.

Result and Discussion

The process of developing this system requires both software and hardware, and both are required before development can begin. In requirement analysis, one determines the prerequisites and circumstances for acquiring the product by taking into account the requirements and conditions of all conceivable end users. The task analysis consists of two requirements: the most likely input data and the most likely output data. The next section will provide further clarification regarding these prerequisites. The first step in the process consists of taking pictures of the licence plate. The photos of the licence plates are the source of the data for this project. Images obtained from licence plates can be helpful in a number of situations, including the investigation of vehicle thefts, the maintenance of safe roads, and the administration of parking lots. It is important to take
precautions to guarantee that the correct and verifiable photos are being used, as this will facilitate more efficient processing. The comparison of the information that was retrieved from the database is the output of the classification process. The end result is a level of precision in the retrieval of information that is roughly equivalent to a greater rate than the technology that came before. The completed picture is the categorised output image of the photographed licence plate based on the labels that were provided.

To successfully complete the project's task, you will need the resources. The requirements serve as the basis for the high-level definition of the resources. Project managers often create resources without first conducting an analysis to determine which resources are necessary based on which criteria. It is composed of a list of the different pieces of hardware and software that are required to complete a task. Design is the process of defining a system's architecture, components, modules, interfaces, and data in order to meet the requirements that have been established. The design of the system explains the specifics of its architecture, as well as the functions and modules that are involved. The next sections provide an in-depth look at the architecture of our suggested model.

Built on the IntelliJ IDEA software from JetBrains and tailored exclusively for Android development, Android Studio is the official integrated development environment (IDE) for Google's Android operating system. It is designed to work with Windows, macOS, and Linux-based operating systems and can be downloaded for free. It is intended to take the place of the Eclipse Android Development Tools (ADT) and other tools of its like. Beginning with version 0.1 in May 2013, it went through the early access preview stage, and beginning with version 0.8, which was made available in June 2014, it moved into the beta stage. Beginning with version 1.0, the first stable build was made available for download in December of 2014. Android Studio supports all of the same programming languages as IntelliJ (and CLion), including Java, C++, and a number of other languages, in addition to supporting extensions for each of these languages. IntelliJ claims that the platform Android Studio is built on supports all released versions of Java up to and including Java 12, yet it is unclear to what level Android Studio supports Java versions up to and including Java 12. It has the flutter plugin, which makes the production of two platforms, Android and iOS, with a single code by using dart programming language developed by Google. Android Studio contains vector graphics enabled features that make it able to work with vector graphics, which leads to better graphics and makes the user interface free from pixel distortion.

When you run Android Studio, a window with options to Command Window, Command History, Workspace, and Run programme will pop up. Built into Android Studio is a wide variety of useful operations, and there is also a toolbox with operations linked to more niche areas. Users can write their own functions and scripts thanks to the integrated IDE (integrated development environment) that includes an editor, debugger, and profiler. All newly created variables can be viewed in the Workspace panel. Support for Gradle-based builds, refactoring, quick fixes, Lint tools to detect performance, usability, version compatibility, and other issues, ProGuard integration, app-signing capabilities, and Template-based wizards to create common Android designs and components are all included in the current stable release. Apps may be built for Android Wear and run on the Android Virtual Device (Emulator) in Android Studio, where users can also perform testing and debugging.

Java is a high-level, object-oriented programming language that is intended to have as few implementation dependencies as feasible. As a result, generated Java code can run on any platforms that accept Java without recompilation, allowing application developers to "write once, run anywhere" (WORA). Java programmes are often compiled to bytecode, which may be executed by any Java virtual machine (JVM), regardless of the hardware architecture. Although Java's syntax is familiar to those familiar with C and C++, it lacks the low-level features of those languages. According to GitHub, as of 2019, Java was one of the most popular...
programming languages in use, especially for client-server web applications, with a total of 9 million developers working with the language. In 1995, Sun Microsystems published Java, which had been created by Sun Microsystems employee James Gosling.

The Extensible Markup Language (XML) specifies a set of rules for encoding documents in a form that can be read by both humans and computers. We use the .xml extension for these files. XML is defined by the World Wide Web Consortium's XML 1.0 Specification (released in 1998) and a number of other related specifications, all of which are freely available open standards. XML was created with the Internet in mind, so its developers could focus on making a universally accessible markup language. It's a text file format that provides extensive support for Unicode, making it suitable for storing data written in a wide variety of languages spoken by humans. Although XML was created with documents in mind, it is increasingly being used to represent non-document data structures, such as those used in web services. Words like "char," "processor," "application," "markup," "content," "tag," "element," "attribute," and "XML declaration" are all important. Refining the designs, specs, and estimations are all part of the detailed design process. For easier comprehension of the modules' features, they are diagrammatically described. There's a focus on the user's role in the suggested model and the work that will be done as a result. In system analysis, a use case is a technique for figuring out what features a computer programme needs and how to categorise them. The full procedure for making the system function is laid forth. Above the arrow, the necessary procedures are outlined. The system's flow is shown by the dashed lines. The user is the primary focus, followed by the system's processing and the machine's output.

Conclusion

The proposed project has a number of goals, the primary one of which is to reduce the amount of car theft and locate the owner of a stolen vehicle by scanning the number plate of the stolen vehicle. The information is clustered more precisely because of our usage of an ML kit algorithm, which makes use of a learning approach to train itself properly and performs the job of clustering the information more successfully. This is one of the reasons why our proposed project is so successful. Image Processing is what is done to get an accurate capture of the image. For the purpose of this undertaking, the model that has been suggested provides a solution to the challenges caused by the traditional approach, which is labor-intensive and results in less efficient output. Our contribution is to develop a method that is both efficient and precise in its output. On the other hand, the clustering methodology is applied in order to organise the user's information according to the proposed model. In the future, we will be able to expand the project by storing the information about the users in a cloud database, which will make it possible to get the data more quickly.

References

114. Prasun Chakrabarti, Tulika Chakrabarti, Mayank Sharma, D Atre D, K.Baba Pai, “Quantification of Thought Analysis of Alcohol-addicted persons and memory loss of patients suffering from stage-4 liver cancer”, Advances in Intelligent Systems and Computing, 1053, pp.1099-1105, 2020

115. Prasun Chakrabarti, Tulika Chakrabarti, Biswajit Satpathy, I SenGupta, Jonathan Andrew Ware, “Analysis of strategic market management in the light of stochastic processes, recurrence relation, Abelian group and expectation”, Advances in Artificial Intelligence and Data Engineering, 1133 , pp.701-710, 2020

