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1. Introduction and Main Results

Recently, the operators have become very popular due to its special applications in recent times in a
wide range of sciences and engineering [1,2,3,4]. Especially, the composition operator [5,6,7,8,9,10,11,12,13]
for a summary of the many studies that have been conducted on these operators in various function spaces.

In 2004, Nieminen and Saksman [14] showed that the compactness of C,, — C,, on the Hardy space.
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In 2020 Choe, Choi, Koo and Yang [15] showed characterized compact operators by using Carleson
measures Further, Moorhouse [16] gives characterized the compactness on the standard weighted Bergman
space A2_,. And others [17,18,19]

So, let's start by defining some terms For 0 < € < o and a positive Borel measure v,, on D, the
Lebesgue space Li,"€ consists of complex valued v,,,-measurable functions f;,, on D such that

llfse = [ D7 lnl (@) < o0
If v, is continuous in L}}€. See [20,21]{[»
For a radial weight w,,, write @,,(z) = f;lZwm(s)ds for all z € D. In this paper we always assume
@m(z) >0, for otherwise Ayt€ = H (D) for each 0 < e < oo.if there exist K = K(wy,) >1 and C =
C(w,) > 1 such that @&,,(1 + €) > Cd,, (1 -

words, w,,, € D if there exists K = K(w,,) > 1 and €' = C'(w,,) > 0 such that
_1-(1+€)

1-(1+¢€)

) for all —1 < € < 0, then we write w,, € D. In other

1

@m(1+e)<6’j Zwm(1+6)d(1+6),—1<6<0.
1+€

The intersection D N D is denoted by D, see [22].

In this work from the Bergman weighting scheme, we think about compact differences between two
composition operators. space AL+¢ to the Lebesgue space L1*2€ when 0 < e < o0 and w,,, € D. To state the
first main result, write

6m (Z) — lpmg(pm (Z) oz
1- lpm(z)(pm(z)

The next result generalizes [[18], Theorem 1.2] to the setting of doubling weights.

Theorem 1. Let 0 < € < o0 and w,,, € D, and let v, be a positive Borel measure on D. Let ¢,,, and i,
be analytic self-maps of ID. Then the following statements are equivalent:

(i) Cp,, — Cy, 1 ALH2€ = L+€ is bounded;

(ii) Cp, — Cy, 1 ALT2€ — L€ is compact;

(iii) 6,,C,, . and &,,C,,  are compact (or equivalently bounded) from A3"2€ to L*e.

The proof of Theorem 1 We first show that C,, — Cy, is compact if §,,,C,, and &,,C,, are bounded.
The proof of this implication is straightforward and relies on the fact that the norm of f,,, € H (D) in A}}'2€ is
comparable to the L} 2¢-norm of the non-tangential maximal function (f;,,)(2) = sup¢er(z) |fin ({)|, Where

1 o
I'(z) = {( € D:|0 —arg{| <§(1 —1%'6)} z=(1+¢€)e? e D\ {0}

We first observe that for each p-lattice {z;} the function

1—|z.\" 1
Zl—)ZZ(a+6)}?<1_zZ> 1
k (wm (T(Zk)))1+26

belongs to A2 forall (a + €),, = {(a + €)i'} € £1*%€ and its Az, ?¢-norm is dominated by a universal
constant times ||(@ + €),ll ,1+2¢- Then, Khinchine's inequality is used in conjunction with this testing function.

€ D.

A complete characterization of such measures in the case w,, € D can be found in [23], [24],[25],[26]. In
particular, it is known that if e > 0 and w,,, € D, then p,, is a (1 + €) — Carleson measure for Agr2€ if and
only if the function
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_Apum(z)
fl"(() 2 wm(T(2)) (1.1)

1+2€
(1+2e)-(1+e) _ . : -

belongs to L,,"*"~"**. Here and from now on T'(z) = {{ € D:z € ['({)} is the tent induced by z € D \
{0}. Further, w,,(E) = fEZwmdA for each measurable set E c D.

It is well known that A(a, 1 + €) is an Euclidean disk centered at (1 — (1 + €)?)a/(1 — (1 + €)?|a|?)
and of radius (1 — |a|®)(1 + €)/(1 — (1 + €)?|a|?). We denote &,,(z) = &, (2)/(1 — |z]) forall z € D and
note that

”fm” 1+2€ - "fm"A}’:-Ze; fm E :]-[(ID), (12)

prowded wm € D, by [22]. Our embedding theorem generalizes the case n = 0 of [ [10], Theorem 1] to
doubling weights and reads as follows.

Theorem 2. Let 0 < e < o and w,, € D, and let u,, be a positive Borel measure on . Then the
following statements are equivalent:

(i) o is @ (1 + €)-Carleson measure for A3;+2€;

(ii) I: A3h2€ — L€ is compact;

(iii) the function

tnAz146€)
wn(S(2))
1+2€

(1+2€)—(1+¢€) .
belongs to Lam for some (equivalently for all) -1 < e < 0.

0, (2) = €D\ {0}

Moreover,
1+2€
II'7 ||A1+€—>L1+ ii@ nn;ii (+26)-(1+€) (1.3)
a’m
1+2€ 1+2€

(1+2e)—(1+¢€) (1+2e)—(1+€) :
We may not replace Lam by L, in part (iii) of Theorem 2. A counter example can

beconstructed as follows. Write D(z, 1 + €) for the Euclidean disc{{:|{ —z| <1+ ¢€}. Let(1+€),=1—
27™and A, = D(0,(1 + €)pn41) \ D(O, (1 + €),,) for all n € N. Pick up an w,,, € D such that it vanishes on
Ay, forall n € N. A simple example of a such weight is 3,y x4,,,,,- Then choose u,, such that (35)

for some £ > 0 its support is contained in the union of the discs A(a,, €) which have the property that
for some fixed —1 < € < 0 we have A(z,1+ ¢€) c 4,, for all z € A(a,, &) and for all n € N. The choice
=146 + (1 +€)ns1)/2wWorksif —1 < e < 0and e = (1 + €) > 0 are sufficiently small. Then,

Wm

for such an (1+ € ), the norm [|©,” Il arze-ave vanishes and thus it cannot be comparable to

fte@mi L which is non-zero if i, is not a zero measure because @.., is strictly positive. Moreover, b
19, I J7 m

(1+2€ee—-(1+€)
choosing u appropriately the norm ||, ™| 1+2¢ _ Can be made infinite.

L [ —
WM (1+26)—(1+€)
It partially completes [13]'s primary result for class D alone. [27] demonstrated an analogous result for
Hardy spaces. Theorem [11] closes the minor Bergman space gap between Hardy and conventional weighted
Bergman spaces.
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Theorem 3. Let 0 < € < oo and w,, € D, and let v,,, be a positive Borel measure on D. Let ¢,,, and 1,,,
be analytic self-maps of D. Then C,, — Cy, : A€ — Li,t2€ is bounded (resp. compact) if and only if §C,,
and &,,,Cy, are bounded (resp. compact) from ALF€ to LiF2€.

If € = 0 then the boundedness (resp. compactness) of 6,,C,, and §,,Cy, implies the same property for
Cy,, — Cy,, by Proposition 4 below. Further, Proposition 5 below shows that C,,  — Cy, is compact if 6,,,C,, .
and 6,,,Cy, . are bounded when € > 0. But we do not know if the boundedness of C,, — Cy, = implies that of
0mCy,, and 6,,Cy,  if wp, € D\Dife>0.

2. Carleson Measures

If w,, € D, then there exist constants 0 < a = a(w,,) < B = B(w,,) < o and C = C(w,,) > 1 such
that

1(1-(1+e) Om(1+e) 1-a+e\f
o (1—(1+26)) < Dm(14+2€) <C (1—(1+e)) ! 1<e<0 (2.1)

the class D because the right hand inequality is satisfied if and only if w,,, € D by [24], Lemma 2.1],
while the left hand inequality describes the class D in an analogous manner [22], (2.27)].

Proof of Theorem 2. If u,, is a (1+ €)-Carleson measure for ALt2€, then I:ALF2€ — L€ is
automatically compact by [26], Theorem 3(iii)]. Therefore, it suffices to show that (i) and (iii) are equivalent
and establish (1.3).

| f;n|1€, Fubini's theorem,Holder's inequality and (1.2) imply [If,,, Iiiffe
m

S o (Jaessn P A ) i (2
1re  Om(9)
= 102 (Jacaton nOI* G

m A 1+ ~ ii +e NAWMIN
< f]])Zlfm(()lu-ze £ ((u,;gS(Z))E)) m(()dA(() Z"fm ||,141+ze||@li:nn ||L(1+26)(1+e)

_ i 1426 NAWmMN 1+22¢
- Z”fm”AHZZE ”@u:nn” (1+26)(1+6)l fm € Awm
wm

AA() ) diin (2)

. ‘ - .
Therefore i, is a (14 €)-Carleson measure for ALY2€ and || [ lji5ze 106 S
“Wm “‘m

105, suze
Conversely, assume that p,, is a (1 + €)-Carleson measure for Az;"2€. Then (1.2) shows that i, is also
a (1 + €)-Carleson measure for Ai{fe and the corresponding operator norms are comparable. Further, since

w,, € D by the hypothesis, an application of (2.1) shows that @,,, € D. Therefore [23], Theorem 1(a)] implies

1+2¢
1+2¢

d'u ({) (1+2e)—(1+¢)
|BEm |20 (1Ee = fz (f —ms &, (2)dA(z) < o,
Il Um ”L(1+2) (1+e) I a)m(T({)) m( ) ( )

where

1
['(z) = {( € D:|arg{ —argz| < E(l —%)}, ze D\ {0}
is a non-tangential approach region with vertex at z. Further, by [26], Theorem 3(iii)] we have ||

I 1+e€ EI Om
lagi2e, xR 1By IIL(1;26) (1+e)-
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Let now —1 < e <0 be given. For € > 0 and ze]D)\D(O,l—%) write zx = (1— (14+¢€)(1 -

|z])e®8%. Pick up (1+e€)=(1+e)(1+€)>1 and (1+2¢)= (1+26)(1+¢€)€ (1 —%, 1)
sufficiently large such that A(zg, 1 + €) c I'(z) for all z € D\ D(0, R). Straightforward applications of the
left hand inequality in (2.1) show that @,,(T({)) S wn(S(0)),as|{| = 17, and @, (2) S @, (2zg) forall z €
D \ D(0,R). In an analogous way we deduce w,,, (S({)) S w,,(S(zx)) forall { € A(zx,1+¢€) and z€ D \
D(0, (1 + 2¢)) by using the right hand inequality.

1+2€

d (1+2€)—-(1+¢€)
| ( | M) Gm()AAQ)
wm.m D\D(O,R) \Ja(zg,1+e) Wm(T({))

1+2€
- .um(A(ZK; 1+ 6))>(1+26)—(1+6)

B j]D)\D(O,R) < wm(S(zK))

Dy (2 )dA(2)

1+2€
|®1(f:: (Z)|(1+26)—(1+E)a"')m (2)dA(2)

j]D)\D(O,l—K(l—R))

3. Sufficient Conditions

In this section we establish sufficient conditions for C, —C, :Ay"€ — L3*2€ to be bounded or
compact. All these results are valid under the hypothesis w,, € D despite the main results stated in the
introduction concern only the class D. We begin with the case € > 0.

Proposition 4. Let 0 < € < o and w,, € D, and let v,, be a positive Borel measure on D. Let ¢,, and
Y, be analytic self-maps of D. If §,,C,, and &,,Cy, are bounded (resp. compact) from A}}€ to Li,F2€, then
Cyp,, — Cy, 1 AL — Li,F2€ is bounded (resp. compact).

Proof. We begin with the statement on the boundedness. Let first e > 0. Let f;, € A€ with || f,,|
1Fix—1<e<0,anddenote E ={z € D:|5,,(2)| <1+e€}and E' =D \ E. Write

and observe that it is enough to prove that the quantities are bounded.

ii(Cqu - Cwm)(fm)XE’ iiL}}+2e- and ii(Cwm - Clpm)(fm)XEiiL%+2€ (3.1)
We begin with considering the first quantity in (3.1). By the definition of the set E we have the estimate

S 1Com = Con) Udxe| K =2 (18mCop ()] + [6mCy (£)]) (32)

on . Since the operators &,,C, and &,,Cy, both are bounded from Ag*€ to Li+2€ by the hypothesis,
the first term in (3.1) is bounded by (3.2).

We next show that also the second term in (3.1) is bounded. Let u,,, be a finite nonnegative Borel measure
on D and h,, a measureable function on . For an analytic self-map ¢,,, of D, the weighted pushforward
measure is defined by

(@m) (R, ) (M) = f(pr_nl(M) Y hpdpy, (3:3)

for each measurable set M c D. If u,, is the Lebesgue measure, we omit the measure in the notation and
write (¢,,). (h,,) (M) for the left hand side of (3.3). By the measure theoretic change of variable [28]. Section
[29], we have [|6:,Cy,,, (fi) e = Il e for each f;, € ALt€. Therefore the identity operator

om)+(16ml1+2€p,y,)

i1+1

|A§,+e <

from Ajf3% to L)% is bounded by the hypothesis. Hence (¢.,). (16,1 " %¢v,,)(A(¢, (1 +

w (‘Pm)*(|6m|1+26vm)
1+2€

2€))) S wyr(S(Q))1+e forall { € D \ {0} by [23], (35) Volume (3) December 2022; [UBJSR: ISSN [1858-
6139]: (Online)
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Theorem 1(c)]. Further, by 10 , Lemma 3], with w,,, = 1 and € = 0, there exists a constant C = C((1 +
€),(1+¢€),(1+ 2¢€)) > 0 such that

1+26 p(Z a)1+6 1+€
@ = @I < CEZ | ) Un@PaAG) a e D 2
€ A(a,1+¢€)

for all f;,, € Ag"€ with Ilfmlliffe < 1. This and Fubini's theorem yield
1 (Com =G ) s Iz

= [ 1n(on@) = @) v 2a4@

|6}n(Z)|1+26 1+2€
) LZ 1 = lon(2)D? (pm(2),1+2€) m (0] dA(Qvm(2)dA()

f D @I f O (Z)IHZE)Z o (2)dA(2) |dAQ)

ot (A, 1+2€))NE (1= lpm (2l (34)

1426 16@)1™*
<[ 2 momE( [ e g @A) )

. Sm 1+2€¢ ' ,
= [3 ipipymracend-LonlZ 2C1429) oy
D

(1 -1n?

1+2€

e SOV
< | D @ B E T da) fDZ @2 dpn Q).

Standard arguments show that u,,(S(a)) < wm(S(a))% for all a € D\ {0}. Hence [23], Theorem

nl+2e 1+2€

1(c)] yields %ii(C,. — Cyp. Yfdxe ||L1+26 S Ylfm ||L1+z€ Sl Xfm ll,iE€. Therefore also the second term in

(3.1) is bounded. This finishes the proof of the case € > 0.
Let now € = 0. By following the proof above, it suffices to show that

)« 6m 1+2€ m ,
fj 3 PolEnl o OO 4AQ) S B w0 (S) 35)
for every Carleson square S c ID. By the hypothesis, the identity operator from Ag;+¢

L}‘;fn, (18,0]+2¢y,,) is bounded, and hence (0) (18, 1M 2V, )(S) < @ (S) for all

S by [[23], Theorem 1(b)]. But for each positive Borel measure u,, on D, Fubini's theorem yields

i (A, 1+ 26))
Js2 =" —jpz 4@

= f{zElD) :S(@)NA(z, 1+26)¢¢}Z (fS(a)nA(z 1+26) (1 — (|2)2> Hm (2)

< saron 2 Uniarze ooads) din(@ = im(S((@+ ), lal > (1 +
2€) , (3.6)

where (a + €),, = (a + €),,(a, 1 + 2¢€) € D satisfies arg(a + €),, =argaand 1 — [(a + €)p,| =1 —
la| foralla € D\ D(0,1 + 2¢). By applying thisto u,,, = (@,,).(|6,,,1* %€ v,,,) and using the hypothesis w,, €
D we deduce (35) .
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f (@) (18m 261 (AL, 1 + 2€))
s(a) (1-1¢h
< Z wn(S((a+6)m) < Z 0, (S(@), la] > (1 + 26).

This estimate implies (3.5), and thus the case € = 0 is proved.
To obtain the compactness statement, it suffices to show that the quantities

ii(C(Pm - Cwm)((fm)n)XE’ iiL%+2e' and ii(Ctpm - Cll)m)((fm)n)XEiivae (3.7)
tend to zero as n — oo for each sequence {(f;,)n}nen IN A4S Which tends to zero uniformly on compact
subsets of D as n — oo and satisfies [|(f,)xll 1+e < 1 for all n € N. Since 6,,C,,. and &,,,Cy, are compact

A S D (o). (8 *20,) (S((@ + )

from A€ to Li,72€ by the hypothesis, an application of (3.2) to f,,, = (f;,), shows that the first quantity in

(3.7) tends to zero as n — oo. As for the second quantity, observe that (3.4) implies
nlt2e

Z ii(C<pm - Cwm)((fm) )XE ||L1+ze

iz @) (1817 2€0,)) (A, 1 + 26))
< fD > 1ha @)l RO dAQ), nEN.  (38)

by the hypothesis, we have (¢.,.). (18,,11*2€1,,) (S(0)) /@ (S(3)) 17 — 0as || — 1~by [19. Theorem 3(ii)].
Now, foreach ¢ € D \ {0} pickup ' = {'({,1 + 2¢) € Dsuchthatarg{’ = arg{,A({’,1+ 2¢) c S({) and
1—1|¢'| =1—|¢| forall { € D\ {0}. Then

(@)« (I8 "2 1) (S(D)) S (m) (1811260, (AT, 1 + 26))

Z 1+2€ = Z 1+e€
W ($(§)) T+e W (S(¢))1+2¢
i 5 1+2¢ m A 111 2
Z (@) (18" v )(H(Z(E + 6)),(E]D)\{O}
wn(S@N) 17

and hence supcepy oy (@m)«(Im |2 v,,) (A, 1 + 26))/wm(5(())% < oo and, for a given ¢ > 0,

there exists n = n(e) € (0,1) such that ¥ (¢,,). (18,1 2 v,,)(A({, 1 + Ze))/wm(S(())lltrzee <¢g forall (€
D\ D(0,n). Further, by the uniform convergence, there exists N = N(g,n,1+ 2¢) € N such that
|(fr)nltT2€ < e0nD(0,7n) foralln > N. These observations together with the proof of the boundedness case
and (3.8) yield

14+2¢

Z ii(C<Pm - Cwm)((fm)n)XEilL%;ze

). (18, 17260, V(A1 + 2 (S(O)) T
Z (@) (|8 [ €0, )E”(e{ + 2¢)) I(fm)n(()I“ZEw i_(()) " 4AQ)
cezncom\{O} w0, (S(Q)) THe D(O1) -1
). (18, 17260, Y(AG, 1 + 2 (S(0))Tre
+ z ((P )(l | 1% )E+2(§ + 6)) |(fm)n(z)|1+26%dl4(()
(ED\D(On) W (S(Q)) T+e D\D(0,1) ( 1<)
om(S(O)) TrE
ngu)) Wd/l(f)‘l' z I(fmdnlljire <& n>N.

Thus also the second quantity in (3.7) tends to zero as n — oo in the case € > 0.
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1+e€

Finally, let e = 0. The compactness of the identity operator from Az'€ to L om)a([8ml 1€

(@m) (18| vm) (S()) /0 (S($)) — 0 as |¢] — 17by (35) .
[ [26], Theorem 3(ii)]. By following the proof above the only different step consists of making the

quantity

om) implies

_ e (@) (18 "0 ) (AL, 1 + 26))
J(m = jD\D(O’n) Z | (Frdn (D) IO dA(Q)

Standard arguments can now be used to make the right hand side smaller than a pregiven € > 0 for n
sufficiently large by using (@,,). (18,11 €v,,) (S(0))/ @ (S(Q)) — 0 as |{| — 17, see, for example, [25 pp.[
91,[27] for details. This completes the proof of the proposition.

The next result is a counter part of Proposition 4 in the case € > 0.

Proposition 5. Let 0 < € < o and w,, € D, and let v, be a positive Borel measure on D. Let ¢,, and
Y, be analytic self-maps of D. If §,,C, and §C, are bounded from ALt2€ to Lite, then C, -
Cy,,: A2 — Li,t€ is compact.

Proof. Let {(f;,)} be a bounded sequence in A3;*2€ such that (f;,,),, - 0 uniformly on compact subsets
of D. Since &,,C,, and &8,,Cy, = are bounded from Aj;*2€ to Li,*€ by the hypothesis, they are also compact by
[26], Theorem 3(iii)], and therefore

1m > (1 Gida @) lgse + 18 Grdn W)l g1c) = 0 (39)
Let —1 < e <1, and denote £ = {z € D:|6(2)| <1+ €} and E' = D \ E. To prove the compactness
of C, — Cy 1AL — LV*e it suffices to show that

lim (ii(cqom - Clpm)((fm)n)XEiiL%:-nE + ii(Ctpm T Cwm)((fm)n)XE’iiL}i;rne) =0

n—-oo

since
nlte

Z 1(Co, — Clpm)((fm)n)"@:ne

nlt+e

= Z ii(C(Pm - Clpm)((fm)n)XE"L,l,:;f

nlte

+ Z ii(C¢m - Clpm)((fm)n)XE’ "L%"’E
By using (3.2) and (3.9), it is easy to show that
Further, by (3.4), we have

im " 1€ = Cp) Grdxel 00 = 0
D (o= o) Uddrs I

e @) 08I €5,) (A, 1 + 26))
<] 20 16 A dAQ)

Let € > 0. Since the identity operator from A},,‘f‘ t0 Ly, ). (16,41"+€v,,,) 1S bounded by

the hypothesis,[ [26]. Theorem 3(iii)] and the dominated convergence theorem imply the existence of an (1 +
2€)o = (1 4+ 2€)y(¢) € (0,1) such that
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1+2€
e(1+26)—(1+€)

(@m) (I8 v) (AL, 1 + 26)) >
sz Ummm PNCIC9) (T S Om(2)dA(2)
< e%, G.10)

1
Further, by the uniform convergence, there exists N = N (&) € N such that |(f;,,),,(2)| < et+e foralln >
N and z € D(0, (1 + 2€),). Therefore, for all n > N, by Fubini's theorem, Holder's inequality,[ [25]. Lemma
4.4] and (3.10), we have
nl+e

Zii (C(pm - CI/)m) ((fm)n)XE"LHe

(@), (81 €0,) (A, 1 + 26))
A=K
(@) (81 €0,) (AG, 1 + 26))
om (T~ D2 dA(O) Om(2)AAE)
(@) (81 €0,) (AG, 1 + 26))
om (T — [{D?

s 3 (Jswaman + Novsoaman ) Fnn @I
Se+ [ (f

dA(¢)

1+€
rz\220+2€)0) | () n (D

<&+ fDZN((fm)n)HE(Z) <fr‘(z)\D(0,(1+26)0)

<X (1T+ NI = €
Therefore lim,, ., ZII(me -C wm)((fm)n) X iiLm = 0, and thus C,, — Cy, is compact from A}o*;fe to

dA(¢ )) wm (2)dA(2)

L1+6.

4. Necessary Conditions

In this section we establish necessary conditions for C,, — Cy :A3?€ — L' to be bounded or
compact.

Proposition 6. Let either 0 < € < oo and w,,, € D or e = 0 and w,,, € D, and let v,,, be a positive Borel
measure on . Let ¢,, and 1, analytic self-maps of . If C, —C, :ALt*€ — Li*€ is bounded (resp.
compact), then &,,C,,  and &,,Cy, are bounded (resp. compact) from Az;*2€ to Li,"€.

Proof. Let first e > 0 and w,, € D. We begin with the boundedness and show in detail that OmCy, s

bounded from AZ}€ to L}t 2€. For each a € D, consider the function

(h)a@ = (12 ') S on(S(@) T, €D

az
induced by w,, and 0 < € < co. Then[ [24], Lemma 2.1] implies that for each y = y(w,,, 1 + 2¢) > 0

sufficiently large we have || (fm)ailA ey = 1forall a € D. Fix such ay. Since C, — Cy, Is bounded, we

have
= > Wdallisze 2 1(Cop = 4, ) (Uil e
1-|a| V 1—lal V[T vm@
f Z | 1— a<pm(z) (1 - dl/)m(z)> a)m(S(a))llJ:r—ZEe dA(z)
1—|a| |7+ 1— apm(2)\" Vi (2)
f Z |1 Ay, (2) a (1 —dlpm(z)> wm(g(a))llf—zeedA(Z).

According to[ [17], p. 795], for each 0 < € < o0 and —1 < € < 0 there exist a constant C = C(y,1 +
€) > 0 such that
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1-awm

3 |1 _( 1-az )y| > Clalp(z,wy), z € A(a, 1 + €), a,w,, €D, (4.1)
An application of this inequality gives (35) .

|a|1+6|6 (Z)|1+E
j v, (2)dA(2)
pm' (Aa1+€) (wm (S(a)))T+2e

e N (@) (18" v) (A(a, 1 + €))
= lafi* ) e
(wm (S(a)))1+2e
It follows that (¢,,,) (|6, *€vy,) is @ bounded (1 + €)-Carleson measure for Ag'2€ by [[23], Theorem
1(c)], and hence 6,,,C,, : Ag"2€ — L3, € is bounded. The same argument shows that also &,,,Cy,  is bounded.

For the compactness statement, first observe that (f;,,), tends to zero uniformly on compact subsets of
D as |a| > 1. Then, if C, — Cy  is compact, we have lim .- X[(C,,, — Cwm)((fm)a)iiL1+e = 0. By

1=z

arguing as above we deduce
(@m) . (18m | “vn) (Al 1 + €)) _ 0

(Om(S(@))iF7e

Therefore 6,,C,, : AL,H2€ — Li,*€ is compact by[ [26]. Theorem 3]. The same argument shows that also
8mCy,,, IS COMpact.

Let now € = 0 and w,,, € D. The statement follows from the proof above with the modification that
[[13]. Theorem 2], valid for w,, € D, is used instead of [[23]. Theorem 1(c)] and[ [26]. Theorem 3]. The only
extra step is to observe that for each w,, € D thereexists 1 + € = (1 + €)(w,,) € (0,1) such that w,,(S(a)) =
wn(A(a,1+€)) forall a € D\ {0}. This follows from (2.1). With this guidance we consider the proposition
proved.

The next result establishes a counter part of Proposition 6 when € > 0.

Proposition 7. Let 0 < € < o and w,, € D, and let v,, be a positive Borel measure on D. Let ¢,,, and
Y, be analytic self-maps of D. If C, — Cy, :A3 %€ — Li,r€ is bounded, then 6,,,C,, and &,,Cy, are both
bounded from A} 2€ to L€

Proof. Let {z, } ey be a p-lattice such that it is ordered by increasing modulii and z, # 0 for all k. Then
by [[30], Theorem 1] there exist constants M = M (1 + 2¢, w,,) > 1 and C = C(1 + 2¢, w,,) > 0 such that

the function
(1=1z\" 1
En(z) = E E (a+e)y — —, Z €D,
1-Zz T+ze
k (wm(T(Zk)))

belongs to Ag"2€ and satisfies TlEpll g2 < CEN(@ + )l preze for all (a+ €),, ={(a+e)M}€e

lim

la|-1"

£1*2¢ . Since C,  — Cy, : Ayt?€ — Lt is bounded by the hypothesis, we deduce

. . - - 1+
I(a+e)mll; > = ||Fm||;£%€ 2 [p2|(Cp = Cp) 0 Fn (@) dvm (2)
1+€

=[pZ|Zk(a+OF (( I = )M) | dvm(2), (@+ ), € 2172

1-Zrpm(2) 1-ZpYm(2) (w(T(Zk)))1+26

We now replace (a + €);* by (a + €)' (1 + €), (1 + €), integrate with
respect to —1 < e < 0, and then apply Fubini's theorem and Khinchine's inequality to get (35)

© 2023, CAJMTCS | CENTRAL ASIAN STUDIES www.centralasianstudies.org ISSN: 2660-5309 | 129



CENTRAL ASIAN JOURNAL OF MATHEMATICAL THEORY AND COMPUTER SCIENCES  Vol: 04 Issue: 05 | May 2023
||(a+e) ”1+6 f z z |(Cl+6)m|2 | ( |Zk| )M
1426 ~ k
mie ‘ ZkQUm (Z)
2
1 1+2€
> / dvpy(2), (a+€), €7 .

_( 1~ |z )“ 2
1—27Z, _2
Zklpm(Z) ((l)m(T(Zk)))1+2€

By applying (4.1) and the estimate |1 — Z;z| = 1 — |z;|, valid for all z € A(z,, p) and k € N, we obtain

D ( 1|zl )M_< 1— 17| >“ By ! 1_(1—z—k¢m(z))’”‘
1- Z_kgom(z) 1- Z_kl/)m(z) 1- Z_k§0m(Z) 1- 5¢m(2)
— |zl
< |Zklz 16m (2] m X(p;ll(A(Zk,p))(Z)
|zk|z 16m () X gt (aGap) (D) 2 ED, k EN,
and hence
(@ + €)mllpiszee 2 |Z1|1+Ej Z (Z | (a
D K
1+€
2
1
+E) ;{anl(Sm (Z)lz 2 X(p;nl(A(zk,p)) (Z) dUm(Z). (42)
(wm(T(Zk)))1+26 /
If € > 0 then the inequality ¥.;¢¥ < (3;¢;)", valid for all ¢; > 0 and x > 1, imply [I(a + €)ll}**
2 [pX| Zkla+ E)’;?|1+6|5m(z)|1+‘€;1+e)(¢ it (Azep)) (@) | dvm(2). (4.3)

(wm(T(z )))1+Ze
To get the same estimate for —2 < € < 0 we apply Holder's inequality. It together with the fact that the
number of discs A(z, 1 + €) to which each ¢,,(z) may belong to is uniformly bounded yields

-fm) Z (Z (@ + €)|1€|5,, (2) 1 *€ 1 Tre Xont Az p))(z)> dvpy,(z)
K

(a)m(T(Zk)))1+26
( 1 Vo
< |( + )m|2|6m( )|2 2 it (A(zg,1+€ (2)
e T
- (Z xw,;;(mk,p»(z)) e
k

D ) I

(‘Um (T(Zk)))1+25

Thus (4.3) holds for each 0 < € < oo. By using Fubini's theorem we now deduce
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1
I(@+ €)mliise = [(a + )| +e — 5(2)|* ¢ dvy,
Z Z (@ + ey e P Um o) (A p)) (@+€)y, € £14%.

1+e€

(wm (T(Zk)))1+ee

1+2€\ * 1+2€

Therefore the sequence belongs to (fﬁ) ~ fa+26-(1+e) and consequently

Z {((fpm)*(ISml“Evm)(A(Zk,p))\

1+e€

U (on@))™ )
(1+21(:'-)|-E((:-1+6)
Z Z /((pm) (18, |1+EV)(A(ZRJ,D))\ <o
(wm(T(Zk)))HZE

Pickupan1l+e = (1+¢€)(p) € (0,1) suchthat A(z,p) € A(z,, 1+ €) forall z € A(z,, p) and k € N.
The right hand inequality in (2.1) shows that @,,(z) = @ (z) and W, (S(2)) = W, (S(z,)) for all z €
A(zy, p) and k € N. Then, as {z; },en is a p-lattice, we deduce

__ 1+2e
(<pm)*(|5m|1+evm)<A<z,p>>)mze)-me)

Dk fA(zk,p)Z< wn(5(2))

O, (2)dA(2)

1+2€

(@) (I8 ") (A2, 1 + e)))W
W (S(Zk))

= ZkZ( D (2i) (1 = |z, ])?

1+2€
(14+2¢e)—(1+¢€)

/((pm)*(|6m|1+619m)(A(Zk: 1+ 6))\

< Zkz 1+€
\ (wm(s(zk)))1+26
1+2€
((pm)*(|6m|1+€pm)(A(Zk,p)) (1+2e)—(1+€)
S Yk Tte < o0o.
<wm(’[‘(zk))1+26

Therefore (¢n).(16,,1"*¢v,,) is @ (1 + €)-Carleson measure for A}2€ by Theorem 2 For the same
reason, (Y,). (|8, *€vy,) is a (1 + €)-Carleson measure for Az 2€. The proof is complete.
5. Proofs of Main Theorems

The key outcomes presented in the introduction readily follow from the propositions demonstrated in
the previous two parts.

Proof of Theorem 11 The theorem follows by Propositions 5 and 7 Namely, if §,,C,  and &,,C,, = are
bounded from Ag'2€ to Lit€, then C, — Cy :ALH*€ — L*€ is compact, and thus bounded as well, by
Proposition 5. Conversely, if C, — Cy, : Ay 2€ — Li,*€ is bounded, then §,,,C,,  and &,,,C,, = are bounded by
Proposition 7 , Proof of Theorem 3 proof Propositions 4 and 6 imply the theorem.
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