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Abstract 

In this paper, a solute transport problem with non-equilibrium 

adsorption in a non-homogeneous porous medium consisting 

of two zones, one with high permeability (mobile zone) and 

another one with low permeability (immobile liquid zone) are 

considered. In the mobile zone, there are two zones in both of 

which adsorption of solute with reversible kinetics occurs. The 

results of this approach are compared with known, traditional 

approaches. It is shown that this method of modeling the 

process gives a satisfactory result. By appropriate selection of 

the parameters of the source term, one can obtain results close 

to those of the well-known bicontinuum approach. 
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Introduction 

Aquifers, oil, and gas reservoirs, as a rule, have a heterogeneous structure at the micro- and macroscale, 

[1]. Heterogeneous reservoirs on a macro scale consist of different zones with different, sometimes very 

strong, filtration-capacitive properties, i.e. porosity, permeability, etc. Zones with well porosity and 

permeability are well conductors for liquids and various substances suspended or dissolved in fluids. A 

typical example of heterogeneous formations is fractured porous media (FPM), [2,3], the structure of which 

is represented as a system of fractures surrounded by porous blocks. 
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In [6] a transport model in a medium with double porosity was considered taking into account the 

reversible and irreversible deposition of colloid particles in both zones and the first-order equilibrium mass 

exchange between the zones. In each zona, i.e. in fractures and porous blocks, a reversible and irreversible 

deposition of particles with various characteristics occurs, described by linear equations. An analytical 

solution to the problem is obtained, which is used to describe the results of previous experiments, [5]. 

Coefficients of mathematical models are defined as the solution to the coefficient inverse problems (CIP), 

known as identification problems, [8]. It is assumed that the coefficients of the equation depend on the 

spatial coordinates and are independent of time. The statements of the problems are based on the use of 

uniqueness theorems for the solution of the CIP proved in [7], [11], [12], [15]. To obtain a unique solution 

of the CIP, it is required to set an overdetermined set of boundary conditions on the boundary of the zone: 

the function for which the equation is written or its normal derivative. 

Coefficient inverse problems (identification problems) have become the subject of intensive study, 

especially in recent years. Interest in them is caused primarily by their important applications. They find 

applications in solving problems of designing oil reservoir development (determining the filtration 

parameters of reservoirs),  [10,10,14,16,17,18] in solving problems of environmental monitoring, etc. The 

standard CIP statement contains a residual function, which depends on the solution of the corresponding 

problem of mathematical physics, [14]. Methods for numerical solution of CIP in connection with their 

applications in underground hydrodynamics were developed in [7], [8], [9], [11], [13]. 

In this paper, an inhomogeneous two-zone medium is considered a single-zone medium with a source 

(sink). The second zone is modeled through the source (sink). This approach is fundamentally new because, 

in fact, the bicontinual medium is presented as monocontinual one. The validity of this approach is justified 

by the convergence of the results on the basis of the mono-continuous approach to the corresponding results 

of the bicontinuous approach. In the work, this is done by minimizing the residual function. In addition, it 

is assumed that in both parts of the first zone there is reversible adsorption of particles with the 

corresponding kinetic equations. Identification of parameters in the source (sink) term in the mass balance 

equation is carried out by solving the corresponding CIP using data from [4]. 

 

 
2. The mathematical model and its numerical implementation 

Fig. 1. Scheme of solute transport in a two-zone medium 



CENTRAL ASIAN JOURNAL OF MATHEMATICAL THEORY AND COMPUTER SCIENCES       Vol: 04 Issue: 06 | June 2023     
 

© 2023, CAJMTCS       |     CENTRAL ASIAN STUDIES   www.centralasianstudies.org          ISSN: 2660-5309        |     47 

 

An inhomogeneous porous medium is considered, consisting of well-permeable and relatively low-

permeable zones, the diagram of which is shown in Fig. 1. The parameters in the first zone are indicated by 

index 1. There are two sections in zone 1, in each of which the particle deposition with reversible 

nonequilibrium nonlinear kinetics occurs. It is believed that such processes also occur in the second zone, 

but we will not write equations and conditions for it. With the second zone, there is an exchange of 

substance, which we model by the fractional-order derivative in time of the solute concentration in the first 

zone. Consequently, in contrast to [4], the concentration field in the second zone is not considered. Note,  

that the fractional approach was previously used in [19], [20], [21]. 

The equations of solute transport in one-dimensional case are written as 
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where t is time, s, x is distance, m, 1D  is longitudinal dispersion coefficient, s2m , 
1

v   is the fluid 

velocity, m/s, 
1

С  is volume concentration of the solute in the fluid, 
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S are concentrations of 
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1
  is porosity, 

33 m/m ,   is medium density, 3m/kg ,
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The deposition of particles in each of the sections of the first zone is reversible with the difference 

kinetic equations  
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where 
1a
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k  are coefficients of solute deposition from the fluid phase to the solid phase, 

1−s , ,
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k   are coefficients of substance detachment from the solid phase and transition into liquid, 

1−s . 

Let a fluid with a constant solute concentration 
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с  be pumped into the medium initially saturated with 

pure (without particles) liquid from the initial moment of time. Let us consider such time periods where the 

concentration field does not reach the right boundary of the medium, .=x  Under the noted assumptions, 

the initial and boundary conditions for the problem have the form 
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where I is a sufficiently large integer chosen so that segment ],,0[ Ix  ,hixi =  overlaps the area of the 

calculated change in the fields C1, Sa1, and Sa2. h is the grid step in the х direction.  

In the open grid area 
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equations (1), (2), (3) were approximated as follows 
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The following procedure of computing is used. From (10), (11) 
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3.Numerical results and their analysis 
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,0
0
=c   

sv /m10 4

1

−= ,    
l

vD =
11

,   ,m005,0=
l


3/1800 mkg= , ,1,01 =

  

,105,2,103 14

1

14

1

−−−− == sksk ada  
14

2

14

2 102,104 −−−− == sksk ada  and various .,2 a   



CENTRAL ASIAN JOURNAL OF MATHEMATICAL THEORY AND COMPUTER SCIENCES       Vol: 04 Issue: 06 | June 2023     
 

© 2023, CAJMTCS       |     CENTRAL ASIAN STUDIES   www.centralasianstudies.org          ISSN: 2660-5309        |     50 

 

We minimize the functional 
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that characterizes the standard deviation of 1I  from 2 I  for the entire time period. The calculations 

show that the minimum value of ),( 2 aФ  is achieved at .8,0,0006,02 ==a   
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determined using the proposed approach and model, [4].  For this, the corresponding profiles are plotted 
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The analysis shows that the simpler model proposed here, with an appropriate choice of parameters, 

can satisfactorily describe the results of a more complex model, [4]. 

 

 

 

 

 

Fig. 2. Comparison of concentration profiles obtained on the basis of two models ,0006,02 =a  

8,0= ,  . 
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