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1. Introduction: It has been studied fuzzy fields and fuzzy linear by S. Nanda in 1986 [7], and this 

researcher also studied fuzzy algebras over fuzzy fields in 1990 [8]. After that, the researchers G. Wenxiang 

and L. Tu in 1993 [5] modified the definition of fuzzy algebras over fuzzy fields. Hence, many researchers 

carried out studies until the researchers G.Gebray and B. KrishnaReddy in 2014 [4] reached a definition of 

fuzzy metric on fuzzy linear spaces. We will know fuzzy metric algebra over the fuzzy field and We show 

some important theorems. 

2. Preliminaries 

Definition{2.1}:-[2] Let ⊛:[0,1]×[0,1]→[0,1] is binary operation is defined a continuous t-norm if (([0,1]) 

,⊛) is a topological monoid with unit 1 ∋z⊛e≤v⊛n whenever v≥z and n≥e z,e,v,n ∈ [0,1] . 

Definition{2.2}:-[3] Let (H, J) be fuzzy linear spaces on the fuzzy field (W, Q). The function   :J×J⟶Q is 

defined as a fuzzy metric space ((H, J),   ) over (W, Q) if satisfying the following conditions: 

    (  (   ))     * ( )  ( )+ ,∀    ∈   . 

     (    )    for all    ∈   . 

     (   )            

     (    )    (    ) for all     ∈   . 

     (    )    (    )    (    ) for all      ∈   

Definition {2.3}:-[4] Let (W, Q) be a fuzzy field in Q, J be linear space on Q, and let (H, J) be a fuzzy linear 

space on (W, Q). The norm on (H, J) is a function, ∥⋅∥: J⟶Q satisfies the following conditions: 
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    (∥  ∥)   ( )          ∈     

   ∥  ∥    for all  ∈   . 

   ∥   ∥      if     . 

   ∥   ∥  | | ∥  ∥ for all  ∈   and  ∈   .  

   ∥    ∥   ∥  ∥   ∥  ∥ for all    ∈    

The tuple (    ∥ ∥)is called a fuzzy normed space on a fuzzy field. 

3. ON RESULTS FUZZY METRIC ALGEBRA ON THE FUZZY FIELD 

Definition {3.1}:- Let (W, Q) be a fuzzy field in Q. In algebra J there is a fuzzy set which is H on Q then 

((H, J),    ) is fuzzy metric algebra on (W, Q) if : 

     is a fuzzy algebra. 

   ((   )    ) is a fuzzy metric on (   )  

     (    )    (    )     (    )  ∀         ∈   . 

Definition {3.2}:-[6] Let (W, Q) be a fuzzy field in Q. In algebra J there is a fuzzy set which is H on Q then 

((H, J),∥∙∥) is a fuzzy normed algebra over (W, Q) if : 

   ( ) is a fuzzy algebra. 

   ((   )   ) is a fuzzy norm on (   )  

   ∥  ⋅  ∥   ∥  ∥   ∥  ∥  ∀         ∈   . 

Theorem {3.3}:- Let (    ∥ ∥) over(   ), and   (   )  ∥    ∥   then ((   )    ) is 

                       

Proof: 

   ( ) is a fuzzy algebra. This is proven in the source [1] 

   ((   )    ) is the fuzzy norm on (   )      ((   )   ) is the fuzzy norm on (   )  This is proven in 

the source [2] 

   ∥  ⋅  ∥   ∥ (   )  (   ) ∥   ∥    ∥   ∥    ∥       

  (    )    (    )     (    )  ∀         ∈   . 

Definition{3.4}:- Let ((   )    ) is                      for each 

  ∈                        (  )     radians and center at    then 

  (  )  *  ∈       (     ),  (  (    ))     *   ( )  (  )+  

As for definition               (  )̅̅ ̅̅ ̅̅ ̅̅ ̅ in      radians and center at    then 

  (  )̅̅ ̅̅ ̅̅ ̅̅ ̅   *  ∈       (    ),  (  (    ))     *   ( )  (  )+  

Definition {3.5}:- Let ((   )    )) over (   ) and        is said to be             in   if ∀  ∈

        ∋   ( )      And if    is an open set in   said   is to be              in  . 

Theorem {3.6}:- Let ((   )    ) over (   ). Then  

   ∀  (  )ball will be an open set. 
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   ∀  (  )̅̅ ̅̅ ̅̅ ̅̅ ̅ will be a closed set. 

Poof:  

Let ((   )   ) be a fuzzy metric algebra and   ∈         

   We have to prove   (  ) is an open set 

Suppose that  ∈    (  ) And so van     (     )      (     )     

So we will take         (     )      So we have to prove 

   
( )     (  ) .  

Let   ∈     
( ) we get      (   ) ,      (     )    (   ) hence 

    (     )    (    ) 

    (    )    (     )    (     )     (    )       

 (  (    ))   (    )     *   ( )  (  )+  Hence   ∈    (  ) 

From this, we conclude that   (  )                 

   We have to prove   (  ) ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ is a closed set. 

Suppose that   (  
̅̅ ̅̅ (  ))

  And so van   (  )̅̅ ̅̅ ̅̅ ̅̅ ̅   * ∈       (     ), 

 (  (     ))     *   ( )  (  )+   

  *  ∈       (     ),  (  (     ))     *   ( )  (  )+  

Let   ∈   ,       (     ) , but  

      (     )         , So we have to prove  

   
( )    ,     (     )    (    ) hence 

    (     )    (    )    (     )     (     )       

 (  (    ))   (    )     *   ( )  (  )+  Hence  ∈        
( )    

Then   is an open set. From this, we conclude that   (  )̅̅ ̅̅ ̅̅ ̅̅ ̅                     

Definition {3.7}:- Let ((   )    ) be fuzzy metric algebra,      We say about a limit point to set   if the 

point  ∈                     There is   ∈   such that            (   ),  (  (   ))  

   *   ( )  ( )+  

The set all limit points to the set   is defined (       ) the to set  , denoted by     

   *  ∈   ∀       ∈    ∋          (    )   ,  

 (  (    ))     *   ( )   ( )+  Or We say about a limit point to set   if    opens set in   and if 

  ∈     such that   *    * ++   . The set all limit points to the set   is defined (       ) to the set  , 

denoted by     

Definition {3.8}:- Let ((   )    ) be fuzzy metric algebra,      We say about the point to set N is a 

closure if the point   ∈                     There is   ∈    such that     (   ),  (  (   ))  

   * ( )  ( )+  
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The set whose members are all the closure points of set   is defined (       ) of set   and denoted by  ̅  

 ̅  * ∈   ∀        ∈     ∋   (    )   ,  (  (    ))     *   ( )  ( )+   

Theorem {3.9}:- Let ((   )   ) fuzzy metric algebra and    . Then  

       ̅     ̅          

Proof: Suppose that   ∈                  There is  ∈    such that     and   (    )   , 

 (  (    ))   (   )    *   ( )   ( )+ , ∀          ∈    and   (    )   ,  (  (    ))  

 (   )     *   ( )   ( )+ then   ∈   ̅ 

Hence     ̅ 

        ̅,     ̅ hence        ̅. 

Now let that   ∈   ̅  

     ∈    then   ∈       then  ̅                    ∈   ̅ ∀       ∈   ,   (   )   , 

 (  (   ))   (   )     *   ( )  ( )+ 

                 ∈     and   ∈      , then  ̅         

There for  ̅        

Theorem {3.10}:- Let (    ∥ ∥) fuzzy normed algebra and    . Hence  

        ̅  

    ̅         

Proof: The same method of proving the theorem {3.9}. B. References  
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