MONOPHONIC DISTANCE

Mohammed Khalid Yaqoob
Mathematics, Algebra Graph

Abstract

A u v path is monophonic if it has no chords for any two vertices u and v in a connected graph G, and the monophonic distance \(d_m(u, v) \) is the length of the longest u v monophonic path in G. The monophonic eccentricity of each vertex v in G is given by \(e_m(v) = \max d_m(u, v) : u V \). It is demonstrated that the monophonic center of a graph exists in every graph. The subgraph created by the vertices of G exhibiting minimal monophonic eccentricity is the monophonic center of G. Additionally, it is demonstrated that each connected graph G monophonic center is located within one of its blocks.

© 2023 Hosting by Central Asian Studies. All rights reserved.

1. INTRODUCTION

We take a finite connected graph with no loops and many edges, denoted by \(G = (V(G), E(G)) \). The letters p and q, respectively, stand for the order and size of G. The length of the shortest u v path in G is used to define the distance \(d(u, v) \) between u and v.

The radius \(rad G \) of G is the vertices of G is minimum, eccentricity, and the diameter \(diam G \) of G is the maximum eccentricity among the vertices of G.

1.1. Definition. An edge \(u_i u_j \) with \(j \geq i + 2 \) is a chord of a path \(u_1, u_2, \ldots, u_n \) in a connected graph G. If a u v path P is chord less, it is referred to as a monophonic path. The monophonic distance from u to v, abbreviated as \(dm(u, v) \), is the length of the longest u v monophonic path. A u v monophonic path is defined as one whose length is equal to \(dm(u, v) \).

1.2. Example. In the graph G given in Figure 1.1, we can easily check that \(d(v_1, v_4) = 2, D(v_1, v_4) = 6 \), and \(dm(v_1, v_4) = 4 \). The monophonic path \(P : v_1, v_2, v_3, v_4 \) is \(v_1 - v_4 \) monophonic while the monophonic path \(Q : v_1, v_3, v_4 \) is not \(v_1 - v_4 \) monophonic.

The usual distance \(d \) are metrics on the vertex set \(V \) of a connected graph G, whereas the monophonic distance \(dm \) not based on metrics \(V \). To get the graph G given in Fig 1.1, \(dm(v_4, v_6) = 5, dm(v_5, v_6) = 1 \) and \(dm(v_5, v_6) = dm(v_4, v_6) \). Hence \(dm(v_4, v_6) > dm(v_4, v_5) + dm(v_5, v_6) \) and so the triangle inequality is not satisfied.
1.3. Result. Let u and v be two vertices in a graph G. Then

1. $d_m(u, v) = 0$ if and only if $u = v$.
2. $d_m(u, v) = 1$ if and only if uv is an edge of G.
3. $d_m(u, v) = p - 1$ if and only if G is the path with endvertices u and v.
4. $d_m(u, v) = d_m(u, v) = D(u, v)$ if and only if G is a tree.

1.4. Definition. The monophonic eccentricity of each vertex v in a connected graph G is given by $e_m(v) = \max\{d_m(u, v) : u \in V\}$. A monophonic eccentric vertex of v is one where $d_m(u, v) = e_m(v)$ for the vertex u of G. The formulas $\text{rad}_m G = \min\{e_m(v) : v \in V\}$ and $\text{diam}_m G = \max\{e_m(v) : v \in V\}$, respectively, determine the monophonic radius and diameter of G.

1.5. Example. We will use a condensed explanation in this example, as indicated in Table 1.1. The graph G provided is shown in along with the vertices' eccentricities and monophonic distances in a monophonic manner. Note that $\text{rad}_m G = 3$ and $\text{diam}_m G = 5$.

$$
\begin{array}{ccccccccc}
& v_1 & v_2 & v_3 & v_4 & v_5 & v_6 & v_7 & v_8 & e_m(v) \\
v_1 & 0 & 1 & 1 & 4 & 1 & 4 & 3 & 4 & 4 \\
v_2 & 1 & 0 & 4 & 3 & 1 & 5 & 4 & 1 & 5 \\
v_3 & 1 & 4 & 0 & 1 & 2 & 4 & 4 & 4 & 4 \\
v_4 & 4 & 3 & 1 & 0 & 1 & 5 & 1 & 4 & 5 \\
v_5 & 1 & 1 & 2 & 1 & 0 & 1 & 3 & 3 & 3 \\
v_6 & 4 & 5 & 4 & 5 & 1 & 0 & 1 & 1 & 5 \\
v_7 & 3 & 4 & 4 & 1 & 3 & 1 & 0 & 1 & 4 \\
v_8 & 4 & 1 & 4 & 4 & 3 & 1 & 1 & 0 & 4 \\
\end{array}
$$

Table 1.1. Figure 1.1 shows the monophonic eccentricities of the graph G vertices.

1.6. Note. In a tree T, there is only one path between any two vertices, u and v, and so $d(u, v) = d_m(u, v) = D(u, v)$. Hence $\text{rad}_m T = \text{rad}_D T$ and $\text{diam}_m T = \text{diam}_D T$.

Table 2.1.2 lists the monophonic diameter and monophonic radius of a few common graphs.
Table 1.2. Several common graphs’ monophonic diameter and radius

<table>
<thead>
<tr>
<th>Graph</th>
<th>K_p</th>
<th>C_p</th>
<th>$W_{1,p-1}(p \geq 4)$</th>
<th>$K_{1,p-1}(p \geq 2)$</th>
<th>$K_{m,n}(m, n \geq 2)$</th>
<th>P_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>rad_mG</td>
<td>1</td>
<td>$p - 2$</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>$\frac{n}{2}$</td>
</tr>
<tr>
<td>diam_mG</td>
<td>1</td>
<td>$p - 2$</td>
<td>$p - 3$</td>
<td>2</td>
<td>2</td>
<td>$n - 1$</td>
</tr>
</tbody>
</table>

1.7. **Theorem.** (a) If a, b and c are integers with $3 \leq a \leq b \leq c$, then a connected graph exists G such that $\text{rad} \ G = a$, $\text{rad}_mG = b$ and $\text{rad}_D \ G = c$.

(b) If a, b and c are integers with $5 \leq a \leq b \leq c$, then a connected graph appears. G exists in such a way that $\text{diam} \ G = a$, $\text{diam}_mG = b$ and $\text{diam}_D \ G = c$.

Proof. (a) Three examples are used to demonstrate the conclusion.

Case (i) $3 \leq a = b = c$. Consider $G = P_{2a+1}$. path, of order $2a + 1$. It is clear that $\text{rad} \ G = \text{rad}_mG = \text{rad}_D \ G = a$.

"**Case (ii)** $3 \leq a \leq b < c$. Let $F_1 : u_1, u_2, ..., u_{a-1}$ and $F_2 : v_1, v_2, ..., v_{a-1}$ be two copies of the path P_{a-1} of order $a - 1$. Let $F_3 : w_1, w_2, ..., w_{b-a+3}$ and $F_4 : z_1, z_2, ..., z_{b-a+3}$ two duplicates of the path P_{b-a+3} of order $b - a + 3$, and $F_5 = K_{c-b+1}$ the complete graph of order $c - b + 1$ with $V(F_5) = \{x_1, x_2, ..., x_{c-b+1}\}$. We construct the graph G as follows: (i) identify the vertices x_1 in F_5 and w_1 in F_3; also identify the vertices x_{c-b+1} in F_5 and z_1 in F_4; (ii) identify the vertices w_{b-a+3} in F_3 and u_2 in F_1, and identify the vertices z_{b-a+3} in F_4 and v_2 in F_2; and (iii) join each vertex $w_i (1 \leq i \leq b - a + 2)$ in F_3 and u_1 in F_1, and join each vertex $z_i (1 \leq i \leq c - b + 2)$ in F_4 and v_1 in F_2. The resulting graph G is shown in Figure 1.2. It is easily verified that $e(v) = a$ if $v \in V(F_3)$; $e(v) = a$ if $v \in V(G) - V(F_5)$, $e_m(v) = b$ if $v \in V(F_5)$; $e_m(v) = b$ if $v \in V(G) - V(F_5)$ and $e_D(v) = c$ if $v \in V(F_5)$; and $e_D(v) = c$ if $v \in V(G) - V(F_5)$. It follows that $\text{rad} \ G = a$, $\text{rad}_mG = b$, and $\text{rad}_D \ G = c$.

"**Case (iii)** $3 \leq a < b = c$. Let $E_1 : v_1, v_2, ..., v_{2a+1}$ be a path of order $2a + 1$. Let $E_2 : u_1, u_2, ..., u_{b-a+3}$ and $E_3 : w_1, w_2, ..., w_{b-a+3}$ be two copies of the path P_{b-a+3} of order $b - a + 3$, and let $E_i (4 \leq i \leq 2(b - a) + 3) = 2(b - a)$ copies of K_1. We construct the graph G as follows: (i) identify the vertices v_{a+1} in E_1, u_1 in E_2, and w_1 in E_3; (ii) identify the vertices v_{a-1} in E_1 and u_{b-a+3} in E_2, and identify the vertices v_{a+3} in E_1 and w_{b-a+3} in E_3; and (iii) join each $E_i (4 \leq i \leq b - a + 3)$ with v_{a+1} in E_1 and $u_{i - 1}$ in E_2, and join each $E_i (b - a + 4 \leq i \leq 2(b - a) + 3)$ with v_{a+1} in E_1 and $w_{i - b + a - 1}$ in E_3. The final graph, G, is displayed in Figure 1.3."
Case (i) $5 \leq a = b = c$. Let G be a path of order $a + 1$. Then $diam G = diam_m G = diam_D G = a$.

Case (ii) $5 \leq a \leq b < c$ let $F_1 : u_1, u_2, ..., u_{a-1}$ be the path P_a of order $a - 1$. $F_2 : v_1, v_2, ..., v_{b-a+3}$ be the path P_{b-a+3} of order $b - a + 3$; and $F_3 : K_{c-b+1}$ be the full graph of order c. The graph G is created as follows: (i) Identify the vertices $w_{b-a+3} \in F_2$ and $u_2 \in F_1$; (ii) join each vertex $w_i (1 \leq i \leq b - a + 2)$ in F_2 and u_1 in F_1; and (iii) identify the vertices v_1 in F_3 and w_1 in F_2; Figure 2.1.4 displays the final graph G.

It is easily verified that $e(v) = b$ if $v \in (V(F_2) - \{x_1\}) \cup \{u_{a-1}\}$, $e(v) < a$ if $v \in V(F_2) \cup (V(F_1) - \{u_{a-1}\})$, and $e_m(v) = b$ if $v \in (V(F_3) - \{x_1\}) \cup \{u_{a-1}\}$; $e_m(v) < b$ if $v \in V(F_2) \cup (V(F_1) - \{u_{a-1}\})$, and $e_D(v) = c$ if $v \in (V(F_3) - \{x_1\}) \cup \{u_{a-1}\}$; and $e_D(v) < c$ if $v \in V(F_3) \cup (V(F_1) - \{u_{a-1}\})$. It follows that $diam G = a$, $diam_m G = b$, and $diam_D G = c$.

Case (iii)** $5 \leq a < b = c$. Let $E_i : v_1, v_2, ..., v_{a+1}$ be a path of order $a + 1$; $E_2 : w_1, w_2, ..., w_{b-a+3}$ be another path of order $b - a + 3$; and $E_i (3 \leq i \leq b - a + 2)$ be $b - a$ copies of K_1. Let G be the graph obtained from E_i for $i = 1, 2, ..., b - a + 2$ by identifying the vertices v_{a-2} and v_a of E_1 with w_1 and w_{b-a+3} of E_2, respectively, and joining each $E_i (3 \leq i \leq b - a + 2)$ with v_{a-2} and w_1. The graph G is shown in Fig 1.5**.
It is easily verified that \(e(v) = a \) if \(v \in \{v_1, v_{a+1}\} \); \(e(v) \leq a \) if \(v \in V(G) - \{v_1, v_{a+1}\} \), and \(e_m(v) = b \) if \(v \in \{v_1, v_{a+1}\} \); \(e_m(v) \leq b \) if \(v \in V(G) - \{v_1, v_{a+1}\} \), and \(e_p(v) = c \) if \(v \in \{v_1, v_{a+1}\} \); and \(e_D(v) \leq c \) if \(v \in V(G) - \{v_1, v_{a+1}\} \). It follows that \(rad G = a, rad_m G = b \) and \(rad_D G = c \). The inequality \(rad G \leq diam G \leq 2 rad G \) and \(rad_D G \leq diam_D G \leq 2 rad_D G \) hold for any connected graph \(G \). This is not applicable to monophonic radius and monophonic diameter, though. For instance, it is clear that \(rad_m G = 1 \) and \(diam_m G = p - 3 \geq 3 \) so that \(diam_m G > 2 rad_m G \) when the graph \(G \) is the wheel \(W_{1,p-1} (p \geq 6) \). That there is a connected graph \(G \) with \(rad G = a \) and \(diam G = b \) if \(a \) and \(b \) are any two consecutive positive integers, then \(a \leq b \leq 2a \). That there is a connected graph \(G \) with \(rad_D G = a \) and \(diam_D G = b \) if \(a \) and \(b \) are any two consecutive positive integers, then \(a \leq b \leq 2a \).

The theorem that follows now provides a realization result for \(rad_m G \) and \(diam_m G \).

1.8. Theorem. There exists a connected graph \(G \) such that \(rad_m G = a \) and \(diam_m G = b \) if \(a \) and \(b \) are positive integers with \(a \leq b \).

Proof. Three cases are used to demonstrate this result.

Case(i) \(a = b \geq 1 \). Let \(G \) be the cycle \(C_{a+2} \). Then \(rad_m G = a \) and \(diam_m G = b \).

Case (ii) \(a < b \leq 2a \). Let \(C_1 : u_1, u_2, ..., u_{a+2}, u_1 \) be a cycle of order, and \(C_2 : v_1, v_2, ..., v_{b-a+2}, v_1 \) be a cycle of order, respectively. The graph that results from finding the vertex(es) \(u_1 \) of \(C_1 \) and \(v_1 \) of \(C_2 \) is denoted by \(G \). Since \(b \leq 2a, b - a + 2 \leq a + 2 \) follows naturally. It is obvious that for any \(x \in G, d_m(u_1, x) = a \) and \(d_m(u_1, u_{a+1}) = a \), and as a result, \(e_m(\{u_1\}) = a \). Furthermore, it is clear that \(rad_m G = a \) because no vertex in \(G \) has \(e_m(x) < a \), and \(e_m(u_3) = b \) because it is clear that \(d_m(u_3, v_3) = b \) and \(d_m(u_3, x) \leq b \). Additionally, it is clear that for each vertex \(x \in G, e_m(x) \leq b \), resulting in \(diam_m G = b \).

Case (iii) \(b > 2a \). Let \(G \) stand for the graph formed by finding the end vertex of the path, \(P_{2a} \), and the wheel’s center vertex, \(W = K_1 + C_{b+2} (b \geq 2) \). Since \(b > 2a \), each vertex of \(x \in V(C_{b+2}) \) because \(e_m(x) = b \). Additionally, every vertex of \(x \in V(P_{2a}) \) and \(e_m(v_a) = a \). As a result, \(rad_m G = a \) and \(diam_m G = b \).

1.9. Remark. For integers \(a \) and \(b \) with \(2a < b \), each vertex in the graph \(G \) given in Fig 1.6, has monophonic eccentricity \(b \) or \(n(a \leq n \leq 2a) \). So, unlike standard eccentricity, if \(k \) is an integer such that \(rad_m G < k < diam_m G \), there may not be a vertex \(x \) of \(G \) such that \(e_m(x) = k \).
2. Monophonic center and monophonic periphery

2.1. Definition. The monophonic center $C_m(G)$ of G is the subgraph that is generated by the G single-note center vertices. If $e_m(v) = \text{rad}_m G$, a vertex v in a connected graph G is referred to as a monophonic central vertex. The monophonic periphery is the subgraph that G monophonic peripheral vertices form.

2.2. Remark. It is not necessary for a connected graph's monophonic center to be connected. $C_m(G) = \{v_3, v_6\}$ in relation to the graph G in Figure 2.1.

2.3. Theorem. Every graph has a connected monophonic center.

Proof. G should be a graph. We demonstrate how G is a graph's monophonic center. Let the monophonic diameter of G be given by $l = d_m$. Let $P : u_1, u_2, \ldots, u_i$ and $Q : v_1, v_2, \ldots, v_i$ be two copies of the path P_l. By connecting each vertex of graph G with u_i in P and v_i in Q, the necessary graph H shown in Figure 2.2 is obtained from graphs $G, P,$ and Q. Then, for each vertex x in G, $e_{mH}(x) = d_m$, and for each vertex x outside of G, $d_m + 1 \leq e_{mH}(x) \leq 2 d_m$. $C_m(H) = G$ because $V(G)$ is the collection of monophonic central vertices of H.

2.4. Theorem. Every connected graph's monophonic center $C_m(G)$. Some block of G is a subgraph of G.

Proof. Assume a connected graph G exists with a monophonic center $C_m(G)$ that is not a subgraph of a G block. Afterward, G has a cut vertex v, resulting in $G - v$ having two components, H_1 and H_2, each with $C_m(G)$ vertices. Let u be a G vertex such that $e_m(v) = d_m(u, v)$, and P_1 be the longest $u - v$ monophonic path in G. Consequently, at least one of H_1 and H_2 lacks P_1 vertices, for example, H_2. Now consider a vertex...
\(w \) in \(C_m(G) \) that belongs to \(H_2 \), and consider \(P_2 \) to be the longest \(v - w \) monophonic path in \(G \). \(P_1 \) followed by \(P_2 \) yields the \(u - w \) longest monophonic path with a length greater than \(P_1 \) because \(v \) is a cut vertex. This results in \(e_m(w) > e_m(v) \), implying the contradiction that \(w \) is not the monophonic central vertex of \(G \).

2.5. Problem. Considering any three positive integers \(a, b, \) and \(c \) with \(1 \leq a \leq b \leq c \) whether a connected graph \(G \) exists \(\text{diam} G = a, \text{diam}_mG = b \) and \(\text{diam}_pG = c \)?

![Figure 2.2](image)

Solution: We consider the following four instances.

Case 1. \(a = 1 \). If such a graph exists, \(G \) is a complete graph of order \(c + 1 \) for some \(c \geq 1 \) because \(\text{diam} G = 1 \). Therefore, \(1 = a = b \leq c \) and \(b = \text{diam}_mG = 1 \) and \(\text{diam}_pG = c \). For some \(c \geq 1 \), however, \(G \) is a complete graph of order \(c + 1 \) if \(a = b = 1 \), as a result, if and only if \(1 = a = b \leq c \), there is a graph \(G \) with \(\text{diam} G = a = 1, \text{diam}_mG = b, \) and \(\text{diam}_pG = c \).

Case 2. \(a = b = c \).

A desired graph is one with a path of order \(c + 1 \). (In reality, \(\text{diam} T = \text{diam}_mT = \text{diam}_pT \) is a tree \(T \) property.)

Case 3. \(2 \leq a \leq b < c \).

Let a path lead to the graph \(G, P : u_0, u_1, u_2, \ldots, u_c \) by joining the vertices \(u_c \) and \(u_t \) for \(a - 2 \leq t < c \), and \(u_i \) and \(u_j \) for \(b - 1 \leq i < j \leq c \) (avoiding the multiple edges formed during the construction). It is routine to check that \(\text{diam} G = a, \text{diam}_mG = b, \) and \(\text{diam}_pG = c \).

Case 4. \(2 \leq a < b = c \).

First, suppose \(2 \leq a \leq 3 \). Let \(P : u_0, u_1, u_2, \ldots, u_c \) be a monophonic path of length \(c \). Since \(a < c, P \) is not a \(u_0 - u_c \) geodesic. Let \(Q : u_0, v_1, v_2, \ldots, v_k, u_c \) be a \(u_0 - u_c \) geodesic. Since \(P \) is monophonic, \(v_1 = u_i \) for \(2 \leq i \leq c \). Moreover \(v_1 = u_i \). Otherwise, \(P_1 : v_1, u_0, u_1, u_2, \ldots, u_c \) is a path of length \(c + 1 \), which is a contradiction. Similarly, we have \(v_k = u_{c - 1} \). By the same argument as above, we may assume that \(v_i = u_i \) for \(1 \leq i \leq s \) or \(t \leq i \leq c - 1 \), where \(s < t \) and \(v_j = u_j \) for \(j = s + 1 \) or \(t - 1 \). Hence, \(d(u_0, u_c) \geq 4 \geq a + 1 \), which is a contradiction. Therefore, no such graphs exist in this subcase.

Let's say that's \(a \geq 4 \) now. We can create the graph \(G \) from the path \(P : u_0, u_1, u_2, \ldots, u_c \) by adding a new vertex \(v \) and connecting it to the vertices \(u_{c-a+3} \) and \(u_{c-2i-1} \) for \(1 \leq 2i - 1 < c - a + 2 \). Verifying that \(\text{diam} G = a, \text{diam}_mG = b, \) and \(\text{diam}_pG = c \) is routine.

2.6. Theorem. "A non-trivial graph \(G \) is the monophonic periphery of some connected graph if and only if every vertex of \(G \) has monophonic eccentricity \(1 \) or no vertex of \(G \) has monophonic eccentricity \(1 \)."

Proof. "Suppose that every vertex of \(G \) has monophonic eccentricity \(1 \). Then \(P_m(G) = G \). Next, suppose that no vertex of \(G \) has monophonic eccentricity \(1 \). Hence for any vertex \(x \) in \(G \), there is a vertex \(y \) in \(G \) such that \(e_m(x) = d_m(x, y) \geq 2 \).

Clearly, \(e_m(x) \leq p - 1 \). Now, take \(p \) vertex disjoint paths \(P_i (1 \leq i \leq p) \) each of length \(p - 1 \) such that no vertex of \(P_i \) is a vertex of \(G \). Identify the end vertices of one path, say \(P_i \), with \(x \) and \(y \), thereby producing a cycle of length \(e_m(x) + p - 1 \). This is done for every vertex \(z = x \) of \(G \) by taking a
path $P_j(i = j)$. Let the graph obtained be G_1. Now, for every path $P_i(1 \leq i \leq p)$ in G_1, join each internal vertex of P_i with every vertex of $V(G_1) - V(P_i)$, avoiding multiple edges. Let H be the resulting graph obtained. (It is to be noted that if y is a monophonic eccentric vertex of x, then x is also a monophonic eccentric vertex of y, and adjoining a path as mentioned above, may or may not be done. This does not affect the monophonic eccentricity of any vertex in H.) Let $e_mH(v)$ denote the monophonic eccentricity of a vertex v in H. Then it is clear that $e_mH(v) = p - 1$ for any vertex v in G and $e_mH(v) \leq p - 2$ for any vertex v not in G. Hence $P_m(H) = G$. The graph in Fig. 9 shows the construction of the graph H when G is the path v_1, v_2, v_3, v_4, where $e_mH(v) = 3$ for every vertex v in G and $e_mH(v) = 2$ for every vertex v not in G.

Conversely, let $G = P_m(H)$. Suppose that some but not all vertices of G have monophonic eccentricity 1. Certainly G is a proper subgraph of H. Therefore, for each vertex x of G, it follows that $e_mH(x) = diam_m H \geq 2$. Let u be a vertex of G having monophonic eccentricity 1 in H. Then, u is adjacent to all other vertices of G. Let v be a vertex of H such that $d_mH(u,v) = e_mH(u) = diam_m H \geq 2$. Hence $e_mH(v) = diam_m H$ and so $v \in P_m(H) = G$. Hence u and v are adjacent in G and so u and v are also adjacent in H such that $d_mH(u,v) = 1$, which is a contradiction”.

2.7. Definition. If $rad_mG = diam_m G$, or if G is its own monophonic center, a connected graph G is monophonic and self-centered.

3. Monophonic number of a graph

3.1. Definition. If each vertex v of a graph G lies on an $x - y$ monophonic path in G for some $x, y \in S$, then the set S of its vertices is said to be a monophonic set of G. The monophonic number is the minimum cardinality of a monophonic set of G.

and is indicated by of G. $m(G)$.

3.2. Example. The minimum monophonic sets of the graph G shown in Figure 3.1 are $S_1 = \{x, w\}$ and $S_2 = \{u, w\}$, and as a result, $m(G) = 2$.

Figure 2.3.1 . A graph G with $m(G) = 2$.

If a vertex v in a graph G is a member of each minimal monophonic set in G, then it is a monophonic vertex. Every vertex in S is a monophonic vertex if G has a singular minimal monophonic set S. In the following theorem, we demonstrate that a nontrivial linked graph G has certain vertices that are monophonic G vertices.

3.3. Theorem Every extreme vertex of a connected graph G is contained in every monophonic set of the graph... Additionally, S is the specific minimum monophonic set of G if the set S of all extreme vertices of G is a monophonic set.

Proof. Let S be a monophonic set of G and let u be an extreme vertex. Assume that $u \in S$. Then, for some $x, y \in S$, u is an internal vertex of a $x - y$ monophonic path, let say P. Allow v and w to be u’s neighbors on P. This results in a contradiction because v and w are not contiguous and u is not an extreme vertex. Consequently, u is a member of every monophonic set of G.

© 2023, CAJMTCS | CENTRAL ASIAN STUDIES www.centralasianstudies.org ISSN: 2660-5309 | 71
3.4. **Corollary.** For complete graph $K_p(p \geq 2), m(K_p) = p$.

3.5. **Theorem.** Let S be a monophonic set of G and let G be a connected graph with a cutvertex named v. Then, an element of S is contained in each component of $G - v$.

Proof. Consider a component B of $G - v$ which does not contain any vertex of S. Let any vertex in B be u. Due to the fact that S is a monophonic set, there is a pair of vertices x and y in S such that u lies in some $x - y$ monophonic path $P: x = u_0, u_1, u_2, \ldots, u_n = y$ in G with $u \neq x, y, V$ being a cutvertex of both the $u - y$ subpath P_2 of P and the $x - u$ subpath P_1 of P contain v, it. Hence, which is a contradiction, P is not a path.

3.6. **Theorem.** A connected graph G cutvertex does not belong to any minimum monophonic set of G.

Proof. Let S be the minimum monophonic set of G and let v be a cutvertex of G. Theorem 2.5 states that every part of $G - v$ contains a part of S. Let U and W be two separate parts of $G - v$, where $u \in U$ and $w \in W$. Following that, v is an internal vertex of a monophonic path $u - w$. Let $S' = S - \{v\}$. Every vertex that is located on an $u - v$ monophonic path is evidently also Every vertex that is located on an $u - v$ monophonic path is evidently also monophonic set of G, which is in contrast to the statement that S is a minimum monophonic set of G.

3.7. **Theorem.** If G is a connected non-complete graph with a minimum cutset of vertices, then $m(G) \leq p - k$.

Proof. G is an non-complete connected graph, hence it is obvious that $1 \leq k \leq p - 2$. Let U be the minimum cutset of G, where $U = \{u_1, u_2, u_3, \ldots, u_k\}$. Let $S = V - U$ and $G_1, G_2, \ldots, G_r, (r \geq 2)$ be the parts of $G - U$. Then, for each $j (1 \leq j \leq r)$, every vertex $u_j (1 \leq i \leq k)$ is close to at least one vertex of G_j. Since S is obviously a monophonic set of G, $m(G) \leq |S| = p - k$.

3.8. **Remark.** Theorem 2.3.7 has a sharp bound. For the cycle $C_4, m(C_4) = 2$. Also $\kappa = 2$ and $p - \kappa = 2$. Thus $m(G) = p - \kappa$.

3.9. **Theorem.** G is complete If and only if $m(G) = p$, for any connected graph G of order p.

Proof. Suppose $m(G) = p$. Assume that G is not a fully complete graph. Then, there are two vertices u and v that are such that they are not next to one another in G. G is connected, hence there is a monophonic path with length at least 2 from u to v, let x say P. In order for $x \neq u, v$, it must be a vertex of P. Therefore, $m(G) \leq p - 1$ is congruent since $S = V - \{x\}$ is a monophonic set of G.

3.10. **Definition:** Choose any vertex in G to represent x. If any vertex z with $d_m(x, y) < d_m(x, z)$, z lies on an $x - y$ monophonic path, then vertex y in G is said to be an $x - z$ monophonic superior vertex.

3.11. **Theorem.** Let x represent any G vertex. Then, each x - monophonic superior vertex is a monophonic eccentric vertex of x.

Proof. So that $e_m(x) = d_m(x, y)$, let y be a monophonic eccentric vertex of x. There exists a vertex z in G such that $d_m(x, y) < d_m(x, z)$ and z does not reside on any $x - y$ monophonic path, leading to the contradiction that $e_m(x) \geq d_m(x, z) > d_m(x, y)$, which occurs if y is not an x - monophonic superior vertex.

3.12. **Note.** Theorem 3.11 converse is untrue. The cycle C_6 has the following vertices: $v_1, v_2, v_3, v_4, v_5, v_6, v_1$, where v_4 is a v_1 - monophonic superior vertices and not a v_1 - monophonic eccentric vertices.

3.13. **Theorem.** Supposing G is a connected graph, If and only if two vertices x and y exist, with y being an x-monophonic superior vertex and every vertex of G being on an $x - y$ monophonic path, then $m(G) = 2$.
Proof. Assume that $S = \{x, y\}$ is a minimum monophonic set of G and that $m(G) = 2$. There is a vertex z in G with $d_m(x, y) < d_m(x, z)$ and z does not reside on any $x - y$ monophonic path if y is not an x-monophonic superior vertex. This results in a contradiction because S is not a monophonic set of G.

4. Bounds for the monophonic number of a graph

We provide an improved upper bound for the monophonic number of a graph in the following theorem in terms of its order and monophonic diameter. We use the term "d_m" to represent the monoponic diameter diammG for convenience.

4.1. Theorem. $m(G) \leq p - d_m + 1$ if G is a non-trivial connected graph with order p and monophonic diameter d_m.

Proof. Let $P: u = v_0, v_1, \ldots, v_{d_m} = v$ be an $u - v$ monophonic path of length d_m. Let u and v be the vertices of G such that $d_m(u, v) = d_m$. Let $S = V - \{v_1, v_2, \ldots, v_{d_m} - 1\}$. When $m(G) \leq |S| = p - d_m + 1$, it is evident that S is a monophonic set of G. In order to ensure that the bound in Theorem 2.4.1 is sharp, for the complete graph $K_p (p \geq 2)$, $d_m = 1$ and $m(K_p) = p$.

4.2. Theorem. $2 \leq m(G) \leq g(G) \leq p$ for each connected graph G of order p.

Proof. Every geodesic is a monophonic path, hence every geodesic set must also be a monophonic set. Consequently, $m(G) \leq g(G)$. The other disparities are trivial.

4.3. Remark. 3.1. Theorem 4.2 bounds are exact. Assuming that K_p is a complete graph, $m(K_p) = g(K_p) = p$, $m(P_n) = g(P_n) = 2$ for the path P_n, which is non-trivial. Additionally, $m(G) = g(G)$ is a complete bipartite graph, an even cycle, or a non-trivial tree (G). In Theorem 4.2, every inequality is a rigorous inequality. $S = \{v_6, v_7, v_3\}$ is a minimum monophonic set of the graph G shown in Figure 4.1 such that $m(G) = 3$ and no 3-elements subset of the vertex set is a geodesic set of G. A geodesic set of G is $S \cup \{v_1\}$, hence it follows that $g(G) = 4$. As a result, we have $2 < m(G) < g(G) < p$.

![Figure 4.1. A graph G in Remark 4.3. with 2 < m(G) < g(G) < p](image)

References

