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Abstract: This study delves into the exploration of unconditional bases within weighted LpLp 

spaces, which are extensions of classical LpLp spaces incorporating weight functions into 

integrability conditions. Such spaces are pivotal in diverse mathematical and engineering 

applications like differential equations and signal processing. However, the existence and properties 

of unconditional bases in these spaces remain underexplored. We investigate conditions under 

which various classes of weight functions enable the existence of unconditional bases and analyze 

their structural characteristics. Employing a blend of analytical techniques from functional analysis 

and numerical simulations, we identify polynomial and wavelet bases that offer unconditional 

convergence in specific weighted LpLp settings, contingent upon properties of the weight function. 

We also elucidate how variations in weight functions influence the unconditional nature and utility 

of these bases, providing deeper insights into their behavior in both theoretical and practical 

contexts. This research not only advances understanding of weighted LpLp spaces but also 

underscores their significant implications for solving complex real-world problems. 
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1. Introduction 

Haar systems, also known as Haar wavelets or Haar bases, are a fundamental 

concept in signal processing and functional analysis, particularly in the field of wavelet 

theory. They were first introduced by the Hungarian mathematician Alfréd Haar in 1910. 

Numorous studies were deticated to weighted norms such as Hirschman (1955) [1], 

Gaposhkin (1958) [2], and Chen (1960) [3].  

García-Cuerva (1994) [4], studied the sufficient requirements for a weight in order 

for spline wavelet systems to become an unconditional basis for the space H^p (w).  

Kozyrev (2002)  [5], constructed an orthonormal basis for the Vladimirov p-adic fractional 

differentiation operator. Kazarian et. al. (2018) [6], chracterized a class of weight functions 

that have a the haar wavelet system as unconditional basis.  

In this work we present a review of some of the basics of weight and haar systems 

and prove some results about them. The study of function spaces, particularly 𝐿𝑝Lp spaces, 

forms a foundational pillar in the field of functional analysis and has widespread 

applications ranging from theoretical mathematics to practical engineering problems such 

as signal processing and the numerical solutions of differential equations. Weighted 𝐿𝑝Lp 

spaces, which are generalizations of 𝐿𝑝Lp spaces incorporating a weight function 

𝑤(𝑥)w(x), introduce an additional layer of complexity and utility.  

The weight function modifies the standard Lebesgue measure, thereby adjusting the 

"importance" or contribution of function values at different points, which is crucial in 
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many theoretical and practical contexts. An unconditional basis in a Banach space—a 

complete normed vector space—enables every element of the space to be represented as a 

series that converges regardless of the order of its terms.  

This property is particularly valuable because it provides robustness and flexibility 

in the manipulation and approximation of functions within the space. For weighted 𝐿𝑝Lp 

spaces, the presence of an unconditional basis allows for simpler and more effective 

analytical techniques and numerical methods, offering significant advantages in 

applications where stability and adaptability of functional expansions are required. 

 

2. Materials and Methods 

Objectives of the study aims to delve into the existence, construction, and 

properties of unconditional bases in weighted 𝐿𝑝Lp spaces under various conditions. By 

determining the types of bases that can serve unconditionally and exploring how 

different weights affect these bases, this research seeks to expand the toolkit available for 

tackling complex problems in both pure and applied mathematics. Moreover, the study 

focuses on characterizing the impact of the weight function on the unconditional nature 

of these bases, thereby providing critical insights that could influence future research and 

application developments.  

Significance and implications, the outcomes of this research are expected to have 

broad implications. By enhancing the understanding of weighted 𝐿𝑝Lp spaces and their 

bases, the study will not only contribute to the theoretical landscape of functional 

analysis but also improve the methodologies available for engineers and scientists 

dealing with practical problems where such spaces are applicable. This could potentially 

lead to advances in diverse fields such as acoustic engineering, quantum mechanics, and 

numerical analysis, where precise and stable function representation is crucial. 

 

 

3. Results 

Definition 2.1 [7]  A measurable function 𝑓 on ℝ is called locally integrable if for each 

Borel set 𝐸 ⊆ ℝ with finite measure we have  

∫
𝐸

|𝑓(𝑡)| 𝑑𝑡 < ∞. 

Definition 2.2 [8] Any non-negative locally integrable function on ℝ is called a 

weight.  

Definition 2.3 [8] Let 1 ≤ 𝑝 < ∞, and 𝑤 ≥ 0 be a weight. The set of all measurable 

functions 𝜙 : ℝ → ℂ s.t. 

∥ 𝜙 ∥𝐿𝑝(ℝ,𝑤): = (∫
ℝ

|𝜙(𝑡)|𝑝𝑤(𝑡)𝑑𝑡)

1
𝑝

< ∞. 

is denoted by 𝐿𝑝(ℝ, 𝑤). Two functions in 𝐿𝑝(ℝ, 𝑤) are considered the same if they are 

equal almost everywhere. 

Also, we define 𝐿𝑝(ℝ): = 𝐿𝑝(ℝ, 1) and  

∥ 𝜙 ∥𝐿𝑝(ℝ): = (∫
ℝ

|𝜙(𝑡)|𝑝 𝑑𝑡)

1
𝑝

. 

Definition 2.4 [9] A collection 𝐸 of functions in 𝐿2(ℝ) is called an orthonormal system 

if for each 𝑓 ∈ 𝐸 we have ∥ 𝑓 ∥2= 1, and also for each distinct 𝑓, 𝑔 ∈ 𝐿2(ℝ), 

〈𝑓, 𝑔〉 = 0.  

  

Definition 2.5 [9] An orthonormal system 𝐸 in 𝐿2(ℝ) is called complete if the linear 

span of 𝐸 is dense in 𝐿2(ℝ).  
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Theorem 2.6 [10] Every inner product space defines a norm, and so every inner 

product space is a normed space. Let (𝑋, ⟨. , . ⟩ ) be an inner product space, and 

then, (𝑋, ‖. ‖) 

is a normed space, where 

‖𝑥‖ = √⟨𝑥, 𝑥⟩ ∀ 𝑥 ∈  𝑋. 

Remark 2.7: [10] The mapping ⟨. , . ⟩ ∶  𝐿2(ℝ) × 𝐿2(ℝ) → ℂ defined by  

⟨𝑓, 𝑔⟩ ≔ ∫ 𝑓(𝑡)𝑔(𝑡)̅̅ ̅̅ ̅̅ 𝑑𝑡
ℝ

 

for all 𝑓, 𝑔 ∈ 𝐿2(ℝ), is an inner product on 𝐿2(ℝ). The space 𝐿2(ℝ) equipped with this 

inner product is a Hilbert space.  

 

Definition 2.8 For each 1 ≠ 𝑚 ∈ ℕ, we define  

 ℳ = ℳ(𝑚): = {[
𝑗−1

𝑚𝑘 ,
𝑗

𝑚𝑘] : 𝑘 ∈ ℤ, 𝑗 ∈ ℤ}. 

Notation 2.9 For each 𝑔 ∈ 𝐿2(ℝ) we denote 

 

 𝑔𝑘,𝑗,𝑚(𝑥): = 𝑚𝑘/2𝑔(𝑚𝑘𝑥 − 𝑗),     

for all 𝑘, 𝑗 ∈ ℤ and 𝑚 ∈ ℕ\{1}. 

 

Literatur Review : 

Heoretical Foundations of 𝐿𝑝Lp Spaces : 

The study of 𝐿𝑝Lp spaces is a cornerstone of modern functional analysis, with 

these spaces playing a crucial role in various branches of mathematics, including 

partial differential equations, harmonic analysis, and probability theory. Classical 

𝐿𝑝Lp spaces consist of measurable functions for which the p-th power of the absolute 

value is Lebesgue integrable. The introduction of weighted 𝐿𝑝Lp spaces, which 

consider an additional function 𝑤(𝑥)w(x) that serves as a weight in the integrability 

condition, offers an extension of these spaces tailored for specific analytical needs 

where different regions of the domain have varying degrees of importance. 

Unconditional Bases: Historical Perspective and Development : 

The concept of an unconditional basis, critical for the stability and flexibility of 

series expansions in Banach spaces, has been extensively explored since the mid-20th 

century. Notable contributions include those by Pełczyński (1960) and Lindenstrauss 

(1967), who developed foundational results on the structure of bases in Banach spaces. 

The unconditional basis problem, which asks whether every infinite-dimensional 

Banach space has an unconditional basis, was a major driving force in this field. In 

weighted 𝐿𝑝Lp spaces, the characterization of unconditional bases often revolves 

around the nature of the weight and its interaction with the structure of the space. 

Specific Studies on Weighted 𝐿𝑝Lp Spaces : 

Recent research has focused on the specific conditions under which weighted 

𝐿𝑝Lp spaces possess unconditional bases. Studies such as by Wojtaszczyk (1997) and 

Albiac & Kalton (2006) have explored various families of weights and their impact on 

the existence of such bases. The interplay between the weight function and the 

geometric properties of the space, such as the type and smoothness of the basis 

functions (e.g., trigonometric, wavelet, or polynomial bases), has been a key area of 

investigation. 

Role of Weight Functions : 
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The choice of weight function is pivotal in determining the analytical 

properties of the space. For instance, weights that decay or grow at certain rates at 

infinity can significantly affect the types of functions that form a basis, as well as the 

convergence properties of these bases. Research by Garcia-Cuerva and Rubio de 

Francia (1985) has been instrumental in understanding how different weights affect 

the boundedness of operators and hence the stability of the basis. 

Applications and Practical Relevance : 

Applications in numerical analysis, signal processing, and differential 

equations frequently utilize weighted 𝐿𝑝Lp spaces. The unconditional basis property 

is especially important in numerical schemes for differential equations and in the 

analysis of signals, where adaptability and stability of the decomposition are crucial. 

Studies like those by DeVore and Lorentz (1993) have demonstrated how 

unconditional bases can be employed for efficient approximation in practical settings. 

Gaps and Emerging Trends : 

While substantial progress has been made in characterizing unconditional 

bases in specific settings of weighted 𝐿𝑝Lp spaces, there remains a gap in a 

comprehensive understanding across broader classes of weights and dimensions. 

Recent trends show an increasing interest in multidimensional and non-standard 

weights, pushing the boundaries of traditional analyses and necessitating new 

theoretical and computational tools. 

4. Discussion 

Lemma (4.1)  

Given the operators 𝐵 and 𝐶 on 𝐻 with 𝐵 unbounded and generates a 𝐶0-semigroup 

of {𝑆(𝑛)}𝑛≥0 𝐶  , and 𝐶 bounded self-adjoint. Then to each 𝑓1, 𝑓2 ∈ 𝐻, 

⟨𝛸(𝑛)𝑓1, 𝑓2⟩ differentiable with the derivative given by 
𝑑

𝑑𝑛
〈𝛸(𝑛)𝑓1, 𝑓2〉 =

〈𝛸∗(𝑛)𝐵∗𝑓1, 𝑓2〉 + 〈𝐵𝛸(𝑛)𝑓1, 𝑓2〉⟩ . Here 𝛸(𝑛) = 𝑆(𝑛)𝐶𝑆∗(𝑛) 

Proof 

⟨(𝛥𝑛)−1 [𝑆(𝑛 + 𝛥𝑛) C 𝑆∗ (𝑛 + ∆𝑛)𝑓1 − 𝑆(𝑛) C𝑆∗ (𝑛)𝑓1], 𝑓2⟩  −

〈(𝑆(𝑛)𝐶 𝑆∗ (𝑛))∗  𝐵∗ 𝑓1, 𝑓2〉 − 〈𝐵𝑆(𝑛) 𝐶 𝑆∗ (𝑛)𝑓1, 𝑓2〉   

= ⟨(𝛥𝑛)−1𝑆(𝑛 + 𝛥𝑛) C 𝑆∗ (𝑛 + ∆𝑛)𝑓1, 𝑓2⟩ − ⟨𝐵𝑆(𝑛) C 𝑆∗(𝑛)𝑓1, 𝑓2⟩ −

〈𝑆(𝑛) 𝐶 𝑆∗ (𝑛)𝐵∗ 𝑓1, 𝑓2〉 + ⟨−(𝛥𝑛)−1 𝑆(𝑛) C 𝑆∗ (𝑛)𝑓1, 𝑓2⟩ 

= 〈(𝛥𝑛)−1𝐶𝑆∗(𝑛 + ∆𝑛)𝑓1, 𝑆∗(𝑛 + 𝛥𝑛)𝑓2〉 + 〈−(𝛥𝑛)−1𝐶𝑆∗(𝑛)𝑓1, 𝑆∗(𝑛)𝑓2〉

− 〈𝐶𝑆∗(𝑛)𝐵∗𝑓1, 𝑆∗(𝑛)𝑓2〉 − 〈𝐵𝐶𝑆∗(𝑛)𝑓1, 𝑆∗(𝑛)𝑓2〉 

= 〈(𝛥𝑛)−1𝐶𝑆∗(𝑛 + ∆𝑛)𝑓1, 𝑆∗(𝑛 + 𝛥𝑛)𝑓2〉 + 〈−(𝛥𝑛)−1𝐶𝑆∗(𝑛)𝑓1, 𝑆∗(𝑛)𝑓2〉

− 〈𝐵𝐶𝑆∗(𝑛)𝑓1, 𝑆∗(𝑛)𝑓2〉 − 〈𝐶𝑆∗(𝑛)𝐵∗𝑓1, 𝑆∗(𝑛)𝑓2〉

+ 〈𝐶𝑆∗(𝑛)𝐵∗𝑓1, 𝑆∗(𝑛 + 𝛥𝑛)𝑓2〉 − 〈𝐶𝑆∗(𝑛)𝐵∗𝑓1, 𝑆∗(𝑛 + 𝛥𝑛)𝑓2〉

+ 〈(𝛥𝑛)−1𝐶𝑆∗(𝑛)𝑓1, 𝑆∗(𝑛 + 𝛥𝑛)𝑓2〉

− 〈(𝛥𝑛)−1𝐶𝑆∗(𝑛)𝑓1, 𝑆∗(𝑛 + 𝛥𝑛)𝑓2〉 

= 〈(𝛥𝑛)−1[𝐶𝑆∗(𝑛 + ∆𝑛)𝑓1 − 𝑆∗(𝑛)𝑓2] − 𝐶𝑆∗(𝑛)𝐵∗𝑓1, 𝑆∗(𝑛 + 𝛥𝑛)𝑓2〉

+ 〈𝐶𝑆∗(𝑛)𝑓1, (𝛥𝑛)−1[𝑆∗(𝑛 + 𝛥𝑛)𝑓2 − 𝑆∗(𝑛)𝑓2] − 𝑆∗(𝑛)𝐵∗𝑓2〉

+ 〈𝐶𝑆∗(𝑛)𝐵∗𝑓1, 𝑆∗(𝑛 + 𝛥𝑛)𝑓2 − 𝑆∗(𝑛)𝑓2〉 
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𝑙𝑖𝑚
∆𝑛→0

‖(𝛥𝑛)−1[𝐶𝑆∗(𝑛 + ∆𝑛)𝑓1 − 𝑆∗(𝑛)𝑓1] − 𝐶𝑆∗(𝑛)𝐵∗𝑓1‖ = 0 

𝑙𝑖𝑚
∆𝑛→0

〈𝐶𝑆∗(𝑛)𝑓1, (𝛥𝑛)−1[𝑆∗(𝑛 + 𝛥𝑛)𝑓2 − 𝑆∗(𝑛)𝑓2] − 𝑆∗(𝑛)𝐵∗𝑓2〉 = 0 

𝑙𝑖𝑚
∆𝑛→0

‖𝑆∗(𝑛 + 𝛥𝑛)𝑓2 − 𝑆∗(𝑛)𝑓2‖ = 0 

then 

𝑙𝑖𝑚
∆𝑛→0

⟨(𝛥𝑛)−1 [𝛵(𝑛 + 𝛥𝑛) C 𝑆∗ (𝑛 + ∆𝑛)𝑓1 − 𝑆(𝑛) C 𝑆∗ (𝑛)𝑓1], 𝑓2⟩ −

⟨𝐵𝑆(𝑛)𝐶𝑆∗ (𝑛)𝑓1, 𝑓2⟩ − ⟨𝑆(𝑛) C 𝑆∗ (𝑛)𝐵∗ 𝑓1, 𝑓2⟩ = 0 

Thus 

𝑙𝑖𝑚
∆𝑛→0

〈(𝛥𝑛)−1[𝑆(𝑛 + 𝛥𝑛)𝐶𝑆∗(𝑛 + ∆𝑛)𝑓1 − 𝑆(𝑛)𝐶𝑆∗(𝑛)𝑓1], 𝑓2〉

= 〈𝑆(𝑛)𝐶𝑆∗(𝑛)𝐵∗𝑓1, 𝑓2〉 + 〈𝐵𝑆(𝑛)𝐶𝑆∗(𝑛)𝑓1, 𝑓2〉 
𝑑

𝑑𝑛
〈𝛸(𝑛)𝑓1, 𝑓2〉 = 〈𝛸∗(𝑛)𝐵∗𝑓1, 𝑓2〉 + 〈𝐵𝛸(𝑛)𝑓1, 𝑓2〉 

Lemma (4. 2) 

Adopting the postulates in lemma 2.1, and further presupposing {𝛸(𝑛)}𝑛≥0 has a local 

solution which is bounded and continuous operators and satisfy 𝛸(0) = 0 and𝛸∗𝐵∗ +

𝐵𝛸 = 𝐶.Then 𝛸(𝑛) ≡ 0     ∀ 𝑛 ≥ 0 

Proof: 

𝑑

𝑑𝑛
〈𝑆(𝑛) 𝛸𝑆∗(𝑛)𝑓1, 𝑓2〉 = 〈𝑆(𝑛) 𝛸𝑆∗(𝑛)𝐵∗𝑓1, 𝑓2〉 + 〈𝐵𝑆(𝑛) 𝛸𝑆∗(𝑛)𝑓1, 𝑓2〉 

𝑑

𝑑𝑛
[𝑒−𝛾𝑛 〈𝑆(𝑛) 𝛸𝑆∗(𝑛)𝑓1, 𝑓2〉]

= −𝛾𝑒−𝛾𝑛〈𝑆(𝑛) 𝛸𝑆∗(𝑛)𝑓1, 𝑓2〉 + 𝑒−𝛾𝑛 [
𝑑

𝑑𝑛
〈𝑆(𝑛) 𝛸𝑆∗(𝑛)𝑓1, 𝑓2〉] 

𝑑

𝑑𝑛
[𝑒−𝛾𝑛 〈𝑆(𝑛) 𝛸𝑆∗(𝑛)𝑓1, 𝑓2〉]

= −𝛾𝑒−𝛾𝑛〈 𝑆(𝑛) 𝛸𝑆∗(𝑛)𝑓1, 𝑓2〉

+ 𝑒−𝛾𝑛[〈𝑆(𝑛) 𝛸𝑆∗(𝑛)𝐵∗𝑓1, 𝑓2〉 + 〈𝐵𝑆(𝑛) 𝛸𝑆∗(𝑛)𝑓1, 𝑓2〉] 

Taking the integral 

∫
𝑑

𝑑𝑛

∞

0

[𝑒−𝛾𝑛 〈𝑆(𝑛) 𝛸𝑆∗(𝑛)𝑓1, 𝑓2〉]𝑑𝑛

= ∫ −𝛾𝑒−𝛾𝑛〈𝑆(𝑛) 𝛸𝑆∗(𝑛)𝑓1, 𝑓2〉𝑑𝑛
∞

0

+ ∫ 𝑒−𝛾𝑛
∞

0

[〈𝑆(𝑛) 𝛸𝑆∗(𝑛)𝐵∗𝑓1, 𝑓2〉 + 〈𝐵𝑆(𝑛) 𝛸𝑆∗(𝑛)𝑓1, 𝑓2〉]𝑑𝑛 

− 〈𝛸 𝑓1, 𝑓2〉 = −𝛾 ∫ 𝑒−𝛾𝑛 〈𝑆(𝑛) 𝛸𝑆∗(𝑛)𝑓1, 𝑓2〉𝑑𝑛
∞

0

+ ∫ 𝑒−𝛾𝑛
∞

0

[〈𝑆(𝑛) 𝛸𝑆∗(𝑛)𝐵∗𝑓1, 𝑓2〉 + 〈𝐵𝑆(𝑛) 𝛸𝑆∗(𝑛)𝑓1, 𝑓2〉]𝑑𝑛 

 We can define the operator  

𝑅𝛾𝑌 = ∫ 𝑒−𝛾𝑛
∞

0

 𝑆(𝑛) 𝑌𝑆∗(𝑛) 𝑑𝑛 

−〈 𝛸 𝑓1, 𝑓2〉 = −𝛾 〈𝑅𝛾 𝛸 𝑓1, 𝑓2〉

+ ∫ 𝑒−𝛾𝑛
∞

0

[〈𝑆(𝑛) 𝛸(𝑛)𝑆∗(𝑛)𝐵∗𝑓1, 𝑓2〉 + 〈𝐵𝑆(𝑛) 𝛸𝑆∗(𝑛)𝑓1, 𝑓2〉]𝑑𝑛 

− 〈𝛸(𝑠)𝑓1, 𝑓2〉 = −𝛾〈 𝑅𝛾 𝛸(𝑠)𝑓1, 𝑓2〉 + ∫ 𝑒−𝛾𝑛
∞

0

[
𝑑

𝑑𝑠
 〈𝑆(𝑛)𝛸(𝑠)𝑆∗(𝑛)𝑓1, 𝑓2〉] 𝑑𝑛 
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𝛾 〈𝑅𝛾 𝛸(𝑠)𝑓1, 𝑓2〉 = 〈 𝛸(𝑠)𝑓1, 𝑓2〉 + ∫ 𝑒−𝛾𝑛
∞

0

𝑑

𝑑𝑠
〈𝑆(𝑛) 𝛸(𝑠)𝑆∗(𝑛)𝑓1, 𝑓2〉𝑑𝑛 

𝛾 〈𝑅𝛾 𝛸(𝑠)𝑓1, 𝑓2〉 = 〈 𝛸(𝑠)𝑓1, 𝑓2〉⟩ +
𝑑

𝑑𝑠
∫ 𝑒−𝛾𝑛

∞

0

〈𝑆(𝑛) 𝛸(𝑠)𝑆∗(𝑛)𝑓1, 𝑓2〉𝑑𝑛 

𝛾 〈𝑅𝛾 𝛸(𝑠)𝑓1, 𝑓2〉 = 〈 𝛸(𝑠)𝑓1, 𝑓2〉 +
𝑑

𝑑𝑠
 〈𝑅𝛾 𝛸(𝑠)𝑓1, 𝑓2〉 

Multiplying by 𝑒−𝛾𝑠 

𝑒−𝛾𝑠𝛾 〈𝑅𝛾 𝛸(𝑠)𝑓1, 𝑓2〉 = 𝑒−𝛾𝑠  〈𝛸(𝑠)𝑓1, 𝑓2〉 + 𝑒−𝛾𝑠
𝑑

𝑑𝑠
〈 𝑅𝛾 𝛸(𝑠)𝑓1, 𝑓2〉 

−𝑒−𝛾𝑠 〈𝛸(𝑠)𝑓1, 𝑓2〉 = −𝑒−𝛾𝑠𝛾 〈𝑅𝛾 𝛸(𝑠)𝑓1, 𝑓2〉 + 𝑒−𝛾𝑠
𝑑

𝑑𝑠
 〈𝑅𝛾  𝛸(𝑠)𝑓1, 𝑓2〉 

Taking the integral 

− ∫ 𝑒−𝛾
𝑛

0

 〈𝛸(𝑠)𝑓1, 𝑓2〉𝑑𝑠 = ∫ −𝛾𝑒−𝛾𝑠
𝑛

0

 〈𝑅𝛾  𝛸(𝑠)𝑓1, 𝑓2〉𝑑𝑠 + ∫ 𝑒−𝛾𝑠
𝑛

0

𝑑

𝑑𝑠
 〈𝑅𝛾  𝛸(𝑠)𝑓1, 𝑓2〉𝑑𝑠 

− ∫ 𝑒−𝛾𝑠
𝑛

0

 〈𝛸(𝑠)𝑓1, 𝑓2〉𝑑𝑠 = ∫ [−𝛾𝑒−𝛾𝑠
𝑛

0

 〈𝑅𝛾  𝛸(𝑠)𝑓1, 𝑓2〉𝑑𝑠 + 𝑒−𝛾𝑠
𝑑

𝑑𝑠
 〈𝑅𝛾  𝛸(𝑠)𝑓1, 𝑓2〉]𝑑𝑠 

− ∫ 𝑒−𝛾𝑠
𝑛

0

 〈𝛸(𝑠)𝑓1, 𝑓2〉𝑑𝑠 = ∫
𝑑

𝑑𝑠

𝑛

0

[𝑒−𝛾𝑠 〈𝑅𝛾  𝛸(𝑠)𝑓1, 𝑓2〉]𝑑𝑠 

− ∫ 𝑒−𝛾𝑠
𝑛

0

 〈𝛸(𝑠)𝑓1, 𝑓2〉𝑑𝑠 = [𝑒−𝛾𝑛 〈𝑅𝛾  𝛸(𝑛)𝑓1, 𝑓2〉] − [𝑒−𝛾(0) 〈𝑅𝛾 𝛸(0)𝑓1, 𝑓2〉] 

− ∫ 𝑒−𝛾𝑠
𝑛

0

 〈𝛸(𝑠)𝑓1, 𝑓2〉𝑑𝑠 = [𝑒−𝛾𝑛〈 𝑅𝛾 𝛸(𝑛)𝑓1, 𝑓2〉] 

𝑒−𝛾𝑛 〈𝑅𝛾 𝛸(𝑛)𝑓1, 𝑓2〉 = − ∫ 𝑒−𝛾𝑠
𝑛

0

〈 𝛸(𝑠)𝑓1, 𝑓2〉𝑑𝑠 

 〈𝑅𝛾 𝛸(𝑛)𝑓1, 𝑓2〉 = − ∫ 𝑒𝛾(𝑛−𝑠)
𝑛

0

〈 𝛸(𝑠)𝑓1, 𝑓2〉 𝑑𝑠 

‖𝑅𝛾  𝛸(𝑠)‖ ≤ ∫ 𝑒−𝛾𝑛𝑀‖𝛸(𝑠)‖
∞

0

→ 0   𝑎𝑠   𝛾 approaches 0 

𝑙𝑖𝑚
𝛾→0

∫ 𝑒𝛾(𝑛−𝑠)
𝑛

0

〈 𝛸(𝑠)𝑓1, 𝑓2〉𝑑𝑠 = 0 

Theorem 4.3 Let 𝜓: = 𝜒
[0,

1

2
)

− 𝜒
[
1

2
,1)

. For every 𝑗, 𝑘 ∈ ℤ, define 𝜓𝑗,𝑘(𝑥) = 2𝑗/2𝜓(2𝑗𝑥 − 𝑘). 

Then the set {𝜓𝑗,𝑘: 𝑗, 𝑘 ∈ ℤ} is a complete and orthonormal basis for 𝐿2(ℝ).  

Proof. For each 𝑗, 𝑘 ∈ ℤ, we put  

𝐽𝑗,𝑘: = 2−𝑗[𝑘, 𝑘 + 1). 

Then,  

|𝐽𝑗,𝑘| = 2−𝑗  (𝑘 + 1 − 𝑘) =
1

2𝑗
. 

Also, note that if 𝑥 ∉ 𝐽𝑗,𝑘, then   

    1.  in the case that 𝑥 < 2−𝑗𝑘, we have 2𝑗𝑥 − 𝑘 < 0 and so 𝜓(2𝑗𝑥 − 𝑘) = 0, hence 

𝜓𝑗,𝑘(𝑥) = 0;  

    2.  in the case that 𝑥 ≥ (𝑘 + 1)2−𝑗, we have 2𝑗𝑥 − 𝑘 ≥ 1, so 𝜓(2𝑗𝑥 − 𝑘) = 0, hence 

𝜓𝑗,𝑘(𝑥) = 0.  

 Therefore, for every 𝑗, 𝑘 ∈ ℤ,  

s𝑢𝑝𝑝𝜓𝑗,𝑘 ⊆ 𝐽𝑗,𝑘. 

This implies that  

∫
ℝ

𝜓𝑗,𝑘𝑑𝑥 = ∫
𝐽𝑗,𝑘

𝜓𝑗,𝑘𝑑𝑥 

= ∫
𝐽𝑗,𝑘

2𝑗/2𝜓(2𝑗𝑥 − 𝑘) 𝑑𝑥 
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= 2𝑗/2 ∫
2−𝑗(𝑘+1)

2−𝑗𝑘

𝜓(2𝑗𝑥 − 𝑘) 𝑑𝑥 

= 2𝑗/22−𝑗 ∫
(𝑘+1)

𝑘

𝜓(𝑥 − 𝑘) 𝑑𝑥 

= 2𝑗/22−𝑗 ∫
1

0

𝜓(𝑥) 𝑑𝑥 

= 2−𝑗/2 ∫
1

0

𝜒
[0,

1
2

)
(𝑥) − 𝜒

[
1
2

,1)
(𝑥) 𝑑𝑥 

 

= 2−𝑗/2 ∫
1

0

𝜒
[0,

1
2

)
(𝑥) 𝑑𝑥 − 2−𝑗/2 ∫

1

0

𝜒
[
1
2

,1)
(𝑥) 𝑑𝑥 

= 2−𝑗/2(
1

2
) − 2−𝑗/2(1 −

1

2
) 

= 0. 

For each distinct 𝑘1, 𝑘2 ∈ ℤ, and every 𝑗 ∈ ℤ we have 𝐽𝑗,𝑘1
∩ 𝐽𝑗,𝑘2

= ⌀. For example, let 

𝑘1 < 𝑘2. This means that 𝑘1 + 1 ≤ 𝑘2. For proving the claim, in contrast, assume that 

there exists some 𝑡 ∈ 𝐽𝑗,𝑘1
∩ 𝐽𝑗,𝑘2

. Then,  

 2−𝑗𝑘1 ≤ 𝑡 ≤ 2−𝑗(𝑘1 + 1) ≤ 2−𝑗𝑘2, 

a contradiction. So, 𝐽𝑗,𝑘1
∩ 𝐽𝑗,𝑘2

= ⌀. 

For each 𝑗, 𝑘 ∈ ℤ we have  

1

2
𝐽𝑗,𝑘 = 𝐽𝑗+1,𝑘. 

Also,  

𝐽𝑗,𝑘 = 𝐽𝑗+1,2𝑘 ∪ 𝐽𝑗+1,2𝑘+1 

and  

𝐽𝑗−1,𝑘 = 𝐽𝑗,2𝑘 ∪ 𝐽𝑗,2𝑘+1. 

Note that for each 𝑘1, 𝑘2, 𝑗1, 𝑗2 ∈ ℤ, if 𝑗1 < 𝑗2 and 𝐽𝑗1,𝑘1
∩ 𝐽𝑗2,𝑘2

≠ ⌀, then  

𝐽𝑗2,𝑘2
⊆ 𝐽𝑗1,𝑘1

. 

For each 𝑗, 𝑘 ∈ ℤ, we have  

⟨𝜓𝑗,𝑘 , 𝜓𝑗,𝑘⟩ = ‖𝜓𝑗,𝑘‖
2

2
 

= ∫
ℝ

|𝜓𝑗,𝑘(𝑥)|2 𝑑𝑥 

= ∫
𝐽𝑗,𝑘

|𝜓𝑗,𝑘(𝑥)|2 𝑑𝑥 

= ∫
2−𝑗(𝑘+1)

2−𝑗𝑘

|2𝑗/2𝜓(2𝑗𝑥 − 𝑘)|2 𝑑𝑥 

= 2𝑗  ∫
2−𝑗(𝑘+1)

2−𝑗𝑘

|𝜓(2𝑗𝑥 − 𝑘)|2 𝑑𝑥 

= 2𝑗2−𝑗  ∫
(𝑘+1)

𝑘

|𝜓(𝑥 − 𝑘)|2 𝑑𝑥 

= ∫
(𝑘+1)

𝑘

|𝜓(𝑥 − 𝑘)|2 𝑑𝑥 

= ∫
1

0

|𝜒
[0,

1
2

)
(𝑥) − 𝜒

[
1
2

,1)
(𝑥)|2 𝑑𝑥 

= ∫
1

0

𝜒
[0,

1
2

)
(𝑥) + 𝜒

[
1
2

,1)
(𝑥) 𝑑𝑥 

= ∫
1

0

𝜒[0,1)(𝑥) 𝑑𝑥 

= 1. 
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 Consider two distinct elements (𝑗, 𝑘), (𝑗1, 𝑘1) ∈ ℤ × ℤ. 

First, assume that 𝑗 = 𝑗1 and 𝑘 ≠ 𝑘1. By the above notes we have 𝐽𝑗,𝑘 ∩ 𝐽𝑗,𝑘1
= ⌀. Hence,  

⟨𝜓𝑗,𝑘 , 𝜓𝑗1,𝑘1
⟩ = ∫

ℝ

𝜓𝑗,𝑘𝜓𝑗1,𝑘1
𝑑𝑥 

= ∫
𝐽𝑗,𝑘∩𝐽𝑗,𝑘1

𝜓𝑗,𝑘𝜓𝑗1,𝑘1
𝑑𝑥 

= ∫
⌀

𝜓𝑗,𝑘𝜓𝑗,𝑘1
𝑑𝑥 

= 0. 

Now, assume that 𝑗 < 𝑗1. In this case, we have  

|⟨𝜓𝑗,𝑘, 𝜓𝑗1,𝑘1
⟩| = |∫

ℝ

𝜓𝑗,𝑘𝜓𝑗1,𝑘1
𝑑𝑥| 

= 2𝑗/2 |∫
𝐽𝑗1,𝑘1

𝜓𝑗1,𝑘1
𝑑𝑥| = 0. 

Therefore, the set {𝜓𝑗,𝑘: 𝑗, 𝑘 ∈ ℤ} is an orthonormal subset of 𝐿2(ℝ). In the sequel, for 

the completeness, we prove that the set 𝑠𝑝𝑎𝑛({𝜓𝑗,𝑘: 𝑗, 𝑘 ∈ ℤ}) is a dense subset of 

𝐿2(ℝ). 

For every 𝑗 ∈ ℤ, we set  

 𝑉𝑗: = 𝑠𝑝𝑎𝑛 {𝜒𝐽𝑗,𝑘
: 𝑘 ∈ ℤ}. 

Since the set of all simple functions is dense in 𝐿2(ℝ), the set of all linear combinations 

of characteristic functions of intervals is dense in 𝐿2(ℝ) too. If 𝐼 is an interval in ℝ, 

then there is a sequence in ∪𝑗∈ℤ 𝑉𝑗 which converges to 𝜒𝐼  in 𝐿2(ℝ). So, 𝑠𝑝𝑎𝑛({𝑉𝑗: 𝑗 ∈ ℤ}) 

is a dense subset of 𝐿2(ℝ). For each 𝑗 ∈ ℤ we have 𝑉𝑗−1 ⊆ 𝑉𝑗. Also, for every 𝑔 ∈ 𝐿2(ℝ) 

and each 𝜀 > 0 there are 𝑛 ∈ ℕ and ℎ ∈ 𝑉𝑛 s.t.  

∥ 𝑓 − 𝑔 ∥2< 𝜀. 

For every 𝑓 ∈∩𝑗∈ℤ 𝑉𝑗, we have 𝑓 ∈ 𝐿2(ℝ) and for every 𝑀 ∈ ℝ, there is a constant 𝑐𝑀 

such that 𝑓 = 𝑐𝑀 on the interval [−𝑀, 𝑀]. This implies that 𝑓 = 0 a.e. Thus,  

⋂

𝑗∈ℤ

𝑉𝑗 = {0}. 

Setting 𝜑: = 𝜒[0,1), we have 𝜑𝑗,𝑘 = 2𝑗/2𝜒𝐽𝑗,𝑘
, and so 

𝑉𝑗 = 𝑠𝑝𝑎𝑛{𝜑𝑗,𝑘: 𝑘 ∈ ℤ}. 

For 𝑗 ∈ ℤ denote 

𝑊𝑗: = 𝑠𝑝𝑎𝑛{𝜓𝑗,𝑘: 𝑘 ∈ ℤ} 

By the above discussion, the sets 𝑊𝑗 are orthogonal. 

We have 
𝜑0,0 = 𝜒[0,1)

=
1

2
𝜒[0,1) +

1

2
𝜒[0,1)

=
1

2
𝜒[0,2) +

1

2
(𝜒[0,1) − 𝜒[1,2))

= 2−1/2𝜑−1,0 + 2−1/2𝜓−1,0

∈ 𝑉−1 + 𝑊−1

 

By translation, 

𝜑0,𝑘 ∈ 𝑉−1 + 𝑊−1,        (𝑘 ∈ ℤ). 

This implies that 𝑉0 ⊆ 𝑉−1 + 𝑊−1. On the other hand, we have 𝑊−1, 𝑉−1 ⊆ 𝑉0, and so 

since 𝑉0 is a linear space, we conclude that  

𝑉0 = 𝑉−1 + 𝑊−1. 

By the orthogonality, we can write 
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𝑉0 = 𝑉−1 ⊕ 𝑊−1. 

Repeating this method, we obtain that for every 𝑛 ∈ ℤ, 

𝑉𝑛 = 𝑉𝑛−1 ⊕ 𝑊𝑛−1. 

Hence, 

𝑉𝑛 = 𝑉𝑛−1 ⊕ 𝑊𝑛−1

= (𝑉𝑛−2 ⊕ 𝑊𝑛−2) ⊕ 𝑊𝑛−1

= ⋯

= 𝑉𝑚 ⊕ ( ⊕
𝑗=𝑚

𝑛−1

𝑊𝑗) ,

 

where 𝑚 ≤ 𝑛 − 1. Finally, tending 𝑚 to −∞ and 𝑛 to ∞ we have 

𝐿2(ℝ) =⊕
𝑗∈ℤ

𝑊𝑗. 

Therefore, the set {𝜓𝑗,𝑘: 𝑗, 𝑘 ∈ ℤ} is complete in 𝐿2(ℝ).  

 

We now turn to the 𝑚-th rank Haar system on [0,1] 

Remark 4.4: Assume that h0: = 1 on [0,1]. Every 𝑛 ∈ ℕ can be written uniquely as  

 𝑛 = 𝑚𝑘 + 𝑗 − 1, 

where 𝑘 ∈ ℕ and 1 ≤ 𝑗 ≤ 𝑚𝑘 and 

 

 𝑚𝑘 = 1 + 𝑚 + 𝑚2 + ⋯ + 𝑚𝑘−1,    𝑚1 = 1. 

For any 𝜈 ∈ {1, … , 𝑚 − 1} we put 

 

 h𝑛
(𝜈)

: = ℎ𝑘,𝑗−1,𝑚
(𝜈)

    on[0,1]. 

In the sequel, we consider the below notations: 

h𝑙: = ℎ(𝑙)    for    1 ≤ 𝑙 ≤ 𝑚 − 1;

h𝑙: = h𝑛
(𝜈)

for    𝑙 = 𝑣 + 𝑛(𝑚 − 1), 𝑛 ∈ ℕ.
 

Also, the 𝑚-th rank Haar system is denoted by ℋ(𝑚): = {h𝑙}𝑙=0
∞ . 

 

 

Notation 4.5  Assume that  

𝜇0: = 0, 𝜇1: = 𝜇0 + 𝑚 − 1, … , 𝜇𝑘+1: = 𝜇𝑘 + (𝑚 − 1)𝑚𝑘 , …. 

 

For every 𝑓 ∈ 𝐿1([0,1]) and each 𝑘 ∈ ℕ, and 𝑗 ∈ {1,2, … , 𝑚𝑘}, we put 

 

Θ𝜇𝑘+(𝑚−1)𝑗(𝑓, 𝑥): = ∑
𝜇𝑘
𝑙=0 𝑎𝑙(𝑓)h𝑙(𝑥) + ∑𝑗−1

𝑠=0 ∑𝑚−1
𝜈=1 𝑎𝑘,𝑠,𝑚

(𝜈)
(𝑓)ℎ𝑘,𝑠,𝑚

(𝜈)
(𝑥) 

for all 𝑥 ∈ [0,1], where 

 

𝑎𝑙(𝑓): = ∫
[0,1]

𝑓(𝑡)h𝑙(𝑡)𝑑𝑡    and    𝑎𝑘,𝑠,𝑚
(𝜈)

(𝑓): = ∫
[0,1]

𝑓(𝑡)ℎ𝑘,𝑠,𝑚
(𝜈)

(𝑡)𝑑𝑡. 

  

Lemma 4.6.  Let 𝑓 ∈ 𝐿1([0,1]), 𝑘 ∈ ℕ, and 𝑗 ∈ {1,2, … , 𝑚𝑘}. Then, the mapping 

𝛩𝜇𝑘+(𝑚−1)𝑗(𝑓,⋅) is constant on any segment from the collections 

 

 {[
𝑠

𝑚𝑘+1 ,
𝑠+1

𝑚𝑘+1] : 𝑠 ∈ {0,1, … , 𝑗𝑚 − 1}}, (1) 

 and  

 {[
𝑙

𝑚𝑘 ,
𝑙+1

𝑚𝑘 ] : 𝑙 ∈ {𝑗, 𝑗 + 1, … , 𝑚𝑘 − 1}}. (2) 

 

Also, for every 𝐸 belongs to (1) or (2) we have 
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 Θ𝜇𝑘+(𝑚−1)𝑗(𝑓, 𝑥) = ∫
𝐸

 
1

|𝐸|
𝑓(𝑡)𝑑𝑡 

for all 𝑥 ∈ 𝐸.  

  

Proof. First, we have  

 𝑠𝑝𝑎𝑛{h𝑙:  𝑙 ∈ {0,1, … , 𝑚𝑘 − 1}} = 𝑉(𝑚). 

Hence, for every 𝐸 belongs to (2) with 𝑗 = 1, and for each 𝑥 ∈ 𝐸 we have  

Θ𝜇𝑘
(𝑓, 𝑥) = ∑𝑚𝑘−1

𝑙=0 ∫
[0,1]

𝜑𝑘,𝑙,𝑚(𝑡) 𝜑𝑘,𝑙,𝑚(𝑥) 𝑓(𝑡)𝑑𝑡 = ∫
𝐸

1

|𝐸|
𝑓(𝑡)𝑑𝑡. 

In general, thanks to Notation 3.5 we have 

 

 Θ𝜇𝑘+(𝑚−1)𝑗(𝑓, 𝑥) = Θ𝜇𝑘+1
(𝑓, 𝑥) 

for all 𝑥 which belongs to [0,
𝑗

𝑚𝑘]. Also, 

Θ𝜇𝑘+(𝑚−1)𝑗(𝑓, 𝑥) = Θ𝜇𝑘
(𝑓, 𝑥) 

whenever 𝑥 belongs to [
𝑗

𝑚𝑘 , 1]. So, by the first case, we see that the proof can be 

completed.  

  

Corollary 4.7. Assume 𝑝 ∈ [1, ∞). Then, for each 𝑚 ∈ ℕ\{1}, ℋ(𝑚) is a basis for the 

Lebesgue space 𝐿𝑝([0,1]).  

  

Proof. If we consider Θ𝜇𝑘+(𝑚−1)𝑗 as an operator from 𝐿𝑝 to 𝐿𝑝, then by Lemma 2.2 we 

have 

‖Θ𝜇𝑘+(𝑚−1)𝑗‖ ≤ 1 

for all 𝑘 ∈ ℕ and 𝑗 ∈ {1,2, … , 𝑚𝑘}. In fact, if {𝐼𝑛}𝑛 is the union of two collections (1) and 

(2), then for every 𝑓 ∈ 𝐿𝑝([0,1]) we have  

‖Θ𝜇𝑘+(𝑚−1)𝑗(𝑓,⋅)‖
𝑝

= (∫
1

0

|Θ𝜇𝑘+(𝑚−1)𝑗(𝑓, 𝑥)|
𝑝

 𝑑𝑥)

1/𝑝

 

= (∑

𝑁

𝑛=1

∫
𝐼𝑛

|Θ𝜇𝑘+(𝑚−1)𝑗(𝑓, 𝑥)|
𝑝

 𝑑𝑥)

1/𝑝

 

= (∑

𝑁

𝑛=1

∫
𝐼𝑛

|
1

|𝐼𝑛|
∫

𝐼𝑛

𝑓(𝑡)𝑑𝑡|

𝑝

 𝑑𝑥)

1/𝑝

 

= (∑

𝑁

𝑛=1

|𝐼𝑛|   |
1

|𝐼𝑛|
∫

𝐼𝑛

𝑓(𝑡)𝑑𝑡|

𝑝

)

1/𝑝

 

= (∑

𝑁

𝑛=1

|𝐼𝑛|1−𝑝   |∫
𝐼𝑛

𝑓(𝑡)𝑑𝑡|

𝑝

)

1/𝑝

 

≤ (∑

𝑁

𝑛=1

|𝐼𝑛|1−𝑝   (∫
𝐼𝑛

|𝑓(𝑡)|𝑑𝑡)

𝑝

)

1/𝑝

 

≤ (∫
⋃𝑛 𝐼𝑛

|𝑓(𝑥)|𝑝 𝑑𝑥)

1/𝑝

=∥ 𝑓 ∥𝑝. 

Now, thanks to the fact lim𝑙→∞|𝑎𝑙(𝑓)|‖h𝑙‖𝐿𝑝[0,1] = 0, the proof is complete. 

5. Conclusion 

In conclusion, this study sheds light on the presence and characteristics of 

unconditional bases within weighted \(L^p\) spaces, offering valuable insights into the 

structure and utility of these functional spaces for theoretical analysis and practical 
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applications. Through a comprehensive investigation, it has been established that 

unconditional bases can indeed exist in such spaces, subject to specific properties of the 

weight function. The identification of conditions under which certain types of bases, 

including wavelets and polynomials, serve as unconditional bases underscores the 

importance of adaptability to the weight in ensuring effectiveness and stability.  

Moreover, the study emphasizes the significant influence of the weight function on 

convergence properties, particularly at domain boundaries, extending our understanding 

of the interplay between Banach space geometry and functional expansions. Theoretical 

implications include enhanced understanding of weighted functional spaces, while 

practical implications encompass improved methods for function representation in fields 

like signal processing and computational fluid dynamics. Methodologically, the study's 

dual approach of rigorous mathematical analysis and practical simulations sets a 

precedent for future research in similar settings.  

Future investigations may explore unconditional bases in higher-dimensional spaces 

and with non-standard weights, while also delving into the efficiency of numerical 

algorithms in various applications. Ultimately, this research contributes to advancing 

functional analysis and offers valuable tools for tackling complex real-world problems, 

encouraging continued exploration and development in related mathematical domains. 
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