Mathematical Models the Outflow of a Jet of a Dispersed Mixture into a Flooded Space

Yuldashov A. A.
Senior lecturer of the Bukhara branch of TIIMSH

ABSTRACT

The problem of a submerged jet of a mixture of viscous liquids occurs in various jet apparatuses used in agriculture, industrial technology, and fire-fighting installations. The academicians H. A. Rakhmatullin [1] developed the theory of motion of interpenetrating dispersed mixtures of viscous liquids. Mathematical models of a submerged jet a steady axisymmetric, incompressible liquid of constant concentration is considered. For the hydrodynamic model of the liquid mixture, we take the Landau-Rakhmatullin model. The paper develops mathematical models of round jets from a short thin slit in a flooded space.

© 2021 Hosting by Central Asian Studies. All rights reserved.

ARTICLE INFO

Article history:
Received 24 February 2021
Revised form 16 March 2021
Accepted 25 March 2021

Key words: Interpenetrating, dispersion, liquid, submerged, round, concentration, short, mathematics, mixture model, thin, gap.

Introduction. Let us consider the problem of the outflow of a mixture of viscous fluids in the direction of the Ox axis from a sufficiently thin slot located on a vertical plane with a finite amount of motion (momentum).

In various jet devices used in agriculture, industry and fire-fighting installations, the problem of a submerged jet of a mixture of viscous liquids is encountered. The theory of motions of interpenetrating mixtures of viscous fluids was developed by Kh. A. Rakhmatullin [1]. In a number of self-similar jet problems of a single-phase jet of a mixture are considered, which are mainly used for far wakes from a source [2]. In solutions of a number of self-similar problems for a mixture of viscous liquids are given [3]. Below we consider the problem of a submerged jet for a flow region in a close wake, in an axisymmetric formulation. In this problem was solved in a flat setting [4].

The problem is formulated as follows: from an infinitely thin slit located at the point o, the center of the vertical plane perpendicular in the direction of the Ox axis, a jet of a mixture of two viscous liquids beats with infinite velocity, but with some finite amount of motion, or momentum I_0. In this case, when the pulse is finite in an infinitely narrow slot, the flow rate through it should be zero (Fig. 1).

Physically, this means that if the gap is very small and the outflow velocity is high, then the pulse can be finite only at very low flow rates.

Main part. Something similar is observed in a variety of inkjet devices. The flow will be symmetric about the Ox axis. From the physical meaning of the problem it follows that, что $\frac{dp}{dx} = 0$.

The equations of motion of the mixture and the equations of continuity take the form [1;3].
The momentum of motion of a mixture of viscous fluids flowing through an arbitrary cross section of the jet will be constant along the axis of symmetry:

\[
I = \int_{-\infty}^{\infty} (\rho u_1^2 + f_1 \rho_1 u_1^2) \, dy + \int_{-\infty}^{\infty} (\rho u_2^2 + f_2 \rho u_2^2) \, dy = I_0 = \text{const}
\]

(3)

If in (1) we introduce the stream function for each phase of the mixture, then the problem is formulated as follows:

\[
\begin{align*}
\frac{\partial u_1}{\partial x} + v_1 \frac{\partial u_1}{\partial y} &= v_1 \frac{1}{y^k} \frac{\partial}{\partial y} \left(y^k \frac{\partial y_1}{\partial y} f_2 \right) + \frac{K}{\rho_1} (u_2 - u_1), \\
\frac{\partial u_2}{\partial x} + v_2 \frac{\partial u_2}{\partial y} &= v_1 \frac{1}{y^k} \frac{\partial}{\partial y} \left(y^k f_2 \frac{\partial y_2}{\partial y} \right) + \frac{K}{\rho_2} (u_1 - u_2), \\
\frac{\partial u_1}{\partial x} + \frac{\partial v_1}{\partial y} &= 0, \quad \frac{\partial u_2}{\partial x} + \frac{\partial v_2}{\partial y} = 0
\end{align*}
\]

and on the outer boundary of the jet upon transition to a stationary fluid:

\[
u = 0, \quad n_{pu} \quad y = \pm \infty.
\]

From equations (1), taking into account the boundary conditions, we obtain the integral ratio of the pocket for each phase of the mixture.

\[
\begin{align*}
\frac{\partial \psi_1}{\partial y} - \frac{\partial \psi_2}{\partial y} &= v_1 \frac{1}{y^k} \frac{\partial}{\partial y} \left(f_{,y} \frac{\partial \psi_1}{\partial y} \right) + \frac{K}{\rho_1} \left(\frac{\partial \psi_2}{\partial y} - \frac{\partial \psi_1}{\partial y} \right), \\
\frac{\partial \psi_2}{\partial y} - \frac{\partial \psi_1}{\partial y} &= v_1 \frac{1}{y^k} \frac{\partial}{\partial y} \left(f_{,y} \frac{\partial \psi_2}{\partial y} \right) + \frac{K}{\rho_2} \left(\frac{\partial \psi_1}{\partial y} - \frac{\partial \psi_2}{\partial y} \right)
\end{align*}
\]

(4)

Let us bring equation (1) to the form:

\[
\begin{align*}
\frac{\partial \psi_1}{\partial y} + \frac{\partial \psi_1}{\partial y} = \left(\frac{\partial}{\partial x} \frac{\partial \psi_1}{\partial y} \right) \frac{\partial u_1}{\partial x} + \frac{\partial u_1}{\partial y} \frac{\partial \psi_1}{\partial y} &= 0, \\
\gamma_1 \frac{\partial \psi_1}{\partial y} + \gamma_1 \frac{\partial \psi_1}{\partial y} &= \left(\frac{\partial}{\partial x} \frac{\partial \psi_1}{\partial y} \right) \frac{\partial u_1}{\partial x} + \frac{\partial u_1}{\partial y} \frac{\partial \psi_1}{\partial y} &= 0
\end{align*}
\]

(5)

Having chosen dimensionless coordinates,

\[
\psi_n = \gamma_1 \hat{\psi}_n, \quad x = \left(\gamma_1 / u_{10} \right) \hat{x}, \quad y = \left(\gamma_1 / u_{0} \right) \hat{y}
\]
\[\xi = \frac{J_0}{\rho v^2} x, \quad \eta = \frac{J_0}{\rho v^2} y \]

(6)

Taking a new function and introducing a stream function:

\[\psi_n(x, \eta) = \chi^n \varphi_n(\xi, \eta) \]

(7)

And taking into account the condition of the self-similar problem, at, we have the following system of equations:

\[\begin{align*}
8 - 6k & \eta^2 \left(\frac{\partial \psi_n}{\partial \eta} \right)^2 + \xi \eta^2 \left[\frac{\partial \varphi_n}{\partial \eta} \frac{\partial^2 \varphi_n}{\partial \xi^2} - \frac{\partial \varphi_n}{\partial \xi} \frac{\partial^2 \varphi_n}{\partial \eta^2} \right] - \frac{5 - 3k}{3} \varphi_n \frac{\partial^2 \varphi_n}{\partial \eta^2} + k \frac{5 - 3k}{3} \varphi_n \frac{\partial \varphi_n}{\partial \eta} \\
- k \xi \eta & \frac{\partial \varphi_n}{\partial \xi} \frac{\partial \varphi_n}{\partial \eta} = A_0 \frac{k-l}{3} f_n \frac{v_n}{v_1} \left[k \eta \frac{\partial \varphi_n}{\partial \eta} + (k + 4) \eta^2 \frac{\partial^2 \varphi_n}{\partial \eta^2} + \eta^3 \frac{\partial^3 \varphi_n}{\partial \eta^3} \right] + k^* A_0 \eta^{k+1} f_n^{k+2} \left(\frac{\partial \varphi_n}{\partial \eta} - \frac{\partial \varphi_n}{\partial \xi} \right)
\end{align*} \]

(8)

Where \(A_0 = \frac{2\pi}{1 + \rho v_1 v_2^2} \), \(k_n = k_n^{0} = f_n \),

\[\hat{I}_0 = \left(\frac{2\pi}{1 + \rho v_1 v_2^2} \right)^{1/2} \int_0^\infty \left(\frac{u_1}{v_1} \right) y^k \right) \hat{y} \hat{y}, \]

\[\hat{I}_0 = (2\pi)^2 \rho v_1 \int_0^\infty \left(\frac{2\pi}{1 + \rho v_1 v_2^2} \right)^{1/2} f_n (\xi, \eta) \]

We seek the solution of system (8) in the form of a series

\[\begin{align*}
&2 \frac{8 - 6k}{3} \eta^2 \sum_{t=0}^k F_n^{t, t-n} + \frac{5k - 3k^2}{3} F_0^{t, t-n} + \frac{5k - 3k^2}{3} F_0^{t, t-n} + \frac{5k + 3k^2}{3} \sum_{t=0}^k F_n^{t, t-n} \\
= & A_0 \frac{k-l}{3} f_n \frac{v_n}{v_1} \left[\eta^k F_n^{t, t-n} + (k + 4) \eta^k F_n^{t, t-n} + \eta^{k+2} F_n^{t, t-n} \right] + k^* A_0 \eta^{k+1} f_n^{k+2} \left(\frac{\partial \varphi_n}{\partial \eta} - \frac{\partial \varphi_n}{\partial \xi} \right)
\end{align*} \]

(10)

For this system from the boundary conditions (2) we have:

\[\begin{align*}
F_n^{t, t-n} & = 0, \quad F_n^{t, t-n} = 0 \quad \text{npu} \quad \eta = 0 \\
F_n^{t, t-n} & = 0 \quad \text{npu} \quad \eta = \pm \infty
\end{align*} \]

(11)

Based on the integral relations, we have

\[\begin{align*}
\int_0^\infty f_{t, t-n}^2 (\eta) d\eta & + 2 \rho \int_0^\infty f_{t, t-n}^2 (\eta) p \eta = 1 \\
\int_0^\infty f_{t, t-n}^2 (\eta) f_{t, t-n} (\eta) d\eta & + 2 \rho \int_0^\infty f_{t, t-n}^2 (\eta) f_{t, t-n} (\eta) d\eta = 0 \\
\int_0^\infty f_{t, t-n}^2 (\eta) f_{t, t-n} (\eta) d\eta & + 2 \rho \int_0^\infty f_{t, t-n}^2 (\eta) f_{t, t-n} (\eta) d\eta = - \bar{\eta}_{n-l}
\end{align*} \]

(12)

Where

\[\bar{\eta}_{n-l} = \sum_{k=1}^{n-l} f_{t, t-k, t-k} f_{t, t-k} d\eta + \rho \int_0^\infty \int_0^\infty \int_0^\infty \sum_{k=1}^{n-l} f_{t, t-k, t-k} f_{t, t-k} d\eta. \]
Equation Integration \[3 \frac{V_i}{V_i} f_{0i} + f_0 f_{0i} + f_{0i}^2 = 0 \]

Under boundary conditions
\[f_{0i} = 0, \quad f_{0i}^* = 0 \quad \text{npu} \quad \eta = 0; \]
\[f_{0i}' = 0 \quad \text{npu} \quad \eta = \infty \]

Gives \[f_{0i} = 6a \frac{V_i}{V_i} ah. \]

The quantity is determined from the condition (3.7.12)
\[a = 0.275 \left(1 + \frac{s_2 \rho_{02}}{s_1 \rho_{01}}\right)^{\frac{1}{2}}. \]

Passing to the old variables, we get
\[\psi_j(x, y) = 6a \frac{J_0 v_{1x}}{\rho_{01} s_1 v_{1i}} \sqrt{\frac{J_0}{\rho_{01} s_1 v_{1i}^2}} \frac{ay}{x^{\frac{1}{2}}} \]

The velocity field in the jet is determined by the formulas
\[u_1 = 6a \frac{v_{1i}^2}{v_{2i}^2} \frac{J_0}{\rho_{01} s_1 v_{1i}} \left(1 - \frac{t^2}{a_1} \frac{J_0}{\rho_{01} s_1 v_{1i}^2} \frac{y}{x^{\frac{1}{2}}}\right) \]
\[u_2 = 6a \frac{v_{1i}^2}{v_{2i}^2} \frac{J_0}{\rho_{01} s_1 v_{1i}} \left(1 - \frac{t^2}{a_1} \frac{J_0}{\rho_{01} s_1 v_{1i}^2} \frac{y}{x^{\frac{1}{2}}}\right) \]

It can be seen from (14) that the main velocity decreases along the Ox axis.

References
6. Khudaikulov S. I. “Mathematical methods of hydrodynamics and applications to cotton transportation problems”.