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Abstract: This study introduces a Markovian queuing model with scheduled arrival patterns to 

improve the evaluation and optimization of public transportation systems. While traditional models 

often overlook the variability in passenger demand throughout the day, this research addresses this 

gap by incorporating scheduled arrival dynamics that better reflect real-world scenarios at bus stops 

and train stations. The model employs Markovian equations and simulation methods to analyze the 

impact of arrival schedules on passenger flow and capacity management. Results demonstrate that 

the model effectively predicts congestion levels, optimizes service intervals, and improves overall 

system responsiveness. These findings offer actionable insights for transit planners and 

policymakers to enhance scheduling strategies, resource allocation, and passenger satisfaction, 

particularly during peak hours. This work provides a valuable framework for improving urban 

transit efficiency and reliability. 

Keywords: Markovian queuing model, Scheduled arrivals, Public transportation, Congestion 
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1. Introduction 

in operations research Queue theory is a basic concept that aims to improve system 

performance by studying the flow of customers or requests. and determine the most 

appropriate level of service. The importance of queuing models lies in their ability to 

analyze complex systems operating under stochastic arrival and service patterns. It 

provides tailored solutions to wait time and congestion issues... The most widely used 

models in queuing theory include Markovian models, which are known for their 

memoryless properties. where service times follow an exponential distribution. This 

makes predicting and analyzing system behavior easier. Markovian models are especially 

useful for systems where arrival and service depend on probabilistic models. 

In the context of public transportation, these models can be implemented to assess 

and improve gadget performance with the aid of analyzing elements such as passenger 

arrivals, automobile capacities, and service prices. By doing so, these models can assist 

beautify service efficiency, lessen waiting times, and increase the overall effectiveness of 

the transportation gadget. Such fashions assist information-driven choice-making, 

permitting structures to respond higher to fluctuations in call for, ultimately enhancing 

service first-class and minimizing delays.  
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1.1.Background on Markovian Queueing Models and Their Relevance to Public 

Transportation 

Markovian queueing fashions, usually denoted as M/M/1, M/M/c, and so on, are 

primarily based on the premise that arrival and provider strategies observe a Poisson 

distribution and that service instances are exponentially allotted. These models are 

instrumental in simplifying the complex dynamics of real-international systems, 

presenting a framework to observe the common queue lengths, ready times, and device 

utilization (Gross & Harris, 1998). 

 In public transportation, passengers arrive at bus stops, train stations, or other 

transit factors both randomly or consistent with a time table. The Markovian nature of 

queueing fashions is particularly applicable for structures wherein arrival and service 

prices can be approximated with the aid of exponential distributions. This approximation 

permits transit planners to are expecting congestion ranges, optimize schedules, and 

improve ordinary carrier performance (Taha, 2006).  

1.2.Overview of Scheduled Arrival Patterns in Transportation Systems 

Unlike random arrivals, scheduled arrival patterns occur while passengers arrive at 

transit factors based totally on predetermined schedules. These styles are commonly 

observed in public transportation structures, where bus or train schedules have an effect 

on passenger conduct. For example, commuters might also time their arrival at a bus stop 

to coincide with the bus agenda, ensuing in a bursty or batched arrival sample in 

preference to a consistent circulate (Osuna & Newell, 1972). Understanding and modeling 

those scheduled arrival patterns are essential for designing green public transportation 

structures. By incorporating those styles into queueing models, transit agencies can better 

expect top instances, lessen waiting periods, and allocate assets extra successfully. This is 

mainly critical in city regions wherein public transportation is a critical element of daily 

commuting, and delays or inefficiencies can appreciably impact passenger satisfaction and 

gadget performance (Newell, 1982).  

1.3.Problem Statement and Research Objectives 

Despite the importance of Markovian queueing models in public transportation, 

there may be an opening in the literature concerning the mixing of scheduled arrival styles 

into those models. Most conventional queueing models anticipate random or Poisson 

arrival methods, which may not appropriately mirror the conduct of passengers in a 

scheduled transportation system. This trouble can result in suboptimal decisions in time 

table making plans, useful resource allocation, and congestion control. The primary goal 

of this research is to increase a Markovian queueing model that contains scheduled arrival 

patterns, imparting a extra sensible illustration of public transportation structures. The 

proposed model objectives to: 

1. Analyze the impact of scheduled arrival patterns on key performance metrics 

which include ready instances, queue lengths, and device utilization.  

2. Identify most desirable scheduling techniques that reduce passenger waiting 

instances and enhance system performance. 

3. Provide insights for transit corporations to decorate carrier high-quality and 

passenger pride. 

By addressing these objectives, this study contributes to the field of transportation 

planning and operations research, offering a novel approach to optimizing public 

transportation systems using Markovian queueing theory. 
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2.Literature Review 

2.1.Review of Existing Queueing Models in Public Transportation 

Queueing models have been extensively applied in public transportation to 

investigate and optimize diverse elements consisting of passenger wait times, vehicle 

headways, and gadget congestion. Traditional fashions like M/M/1, M/M/c, and M/G/1 had 

been hired to represent exclusive forms of transportation structures (e.G., buses, trains) 

where arrivals and offerings may be approximated by using Poisson procedures and 

exponential carrier instances (Gross & Harris, 1998). These fashions help in know-how the 

common queue lengths, waiting times, and device utilization, presenting precious insights 

for designing efficient public transportation networks.  

For example, the M/M/1 version has been used to take a look at unmarried-server 

systems like buses at a bus forestall wherein passengers arrive randomly, and the bus 

serves them one after the other (Wilson, 1981). Multi-server fashions like M/M/c had been 

carried out to eventualities together with multi-lane toll cubicles or multi-track train 

stations in which several motors serve passengers concurrently (Newell, 1982). 

Furthermore, models like M/G/1 had been useful in situations where provider times vary, 

which includes buses with various boarding and alighting times because of fluctuating 

passenger hundreds (Osuna & Newell, 1972).  

2.2.Discussion on the Limitations of Current Models with Respect to Scheduled 

Arrival Patterns 

Despite its widespread use But these queuing models have several limitations when 

applied to public transport systems with scheduled arrival patterns. Most traditional 

models assume a random or Poisson arrival process. This does not reflect passenger 

behavior in systems where scheduling affects arrival times. Bus or train station correctly 

The station will schedule the arrival time to coincide with the departure time. This allows 

them to arrive in batches rather than as a constant stream (Vuchic, 2005). 

This misalignment can lead to inaccuracies in predicting machine performance, such 

as overestimating or underestimating passenger wait instances and automobile utilization. 

As a result, traditional models might also provide suboptimal recommendations for 

scheduling and resource allocation, potentially main to extended congestion, longer ready 

instances, and reduced passenger satisfaction. The inability of these models to seize the 

nuances of scheduled arrivals highlights the want for extra sophisticated procedures 

which could combine these patterns into the analysis.  

2.3.Summary of Related Research on Markovian Processes 

Research on Markovian tactics has drastically contributed to the development of 

queueing idea and its packages in public transportation. Markovian models, characterised 

by their memoryless houses, have been instrumental in simplifying the evaluation of 

complex structures. Studies have extended simple Markovian models to encompass 

features which include bulk arrivals, priority queues, and country-structured services, 

improving their applicability to actual-global systems (Medhi, 2002). In the context of 

public transportation, researchers have explored the integration of Markovian processes 

with scheduled arrivals. Some studies have proposed fashions that include scheduled 

departures and time-established arrival charges, aiming to higher healthy the observed 

conduct of passengers in transit systems (Adan & Resing, 2002). These fashions account 

for the variety in passenger arrival styles because of schedules, imparting a extra accurate 

illustration of the machine dynamics. 

However, there is still a gap in the literature regarding the comprehensive 

integration of scheduled arrival patterns in Markovian queuing models. Most of the 

existing research focuses on characteristics such as time-dependent rates. or the arrival of 

large numbers It presents an opportunity to further investigate and develop the model. 
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2. Materials and Methods 

Description of the Markovian Queueing Model Developed for This Study 

The Markovian queueing model developed for this study is designed to incorporate 

scheduled arrival patterns into the analysis of public transportation systems. Unlike 

traditional queueing models that assume random arrivals, this model integrates the 

influence of scheduled arrivals on passenger behavior. The model is based on the M/M/1 

framework but is adapted to include time-dependent arrival rates that reflect scheduled 

patterns. 

In this model, the arrival process is divided into distinct time intervals corresponding 

to the schedule of the public transportation system. Within each interval, the arrival rate 

of passengers is modeled as a Poisson process, but the rate itself changes according to the 

schedule. This approach allows for the modeling of both peak and off-peak periods, 

capturing the variability in passenger arrivals that results from adherence to transit 

schedules. 

The provider process remains exponentially dispensed, consistent with Markovian 

assumptions, and represents the time taken by way of a car (e.G., bus, educate) to serve 

arriving passengers. The model also accounts for the capacity constraints of the motors, 

incorporating a finite queue period to simulate real-world eventualities where restrained 

space can result in passengers being grew to become away or behind schedule.  

Explanation of the Scheduled Arrival Patterns and How They Are Integrated into 

the Model 

Scheduled arrival patterns are an important part of this model. This reflects the fact 

that passengers often plan their arrival at transit according to bus, train or other vehicle 

schedules. to support these formats The model divides the day into several periods. Each 

period is linked to specific arrival rate For example, during rush hour when buses are 

scheduled to arrive more often. The model determines a higher arrival rate. This indicates 

that passengers are likely to arrive in large numbers to board these buses. and vice versa 

Arrival rates will fall to reflect reduced passenger demand. This dynamic adjustment of 

arrival rates allows the model to more accurately simulate the impact of scheduled arrivals 

on queuing behavior. 

Mathematically, the arrival rate λ(t) is a piecewise function defined for each interval 

t_i where t ∈ [t_i, t_{i+1}] with a corresponding rate λ_i. The service rate μ remains 

constant, and the system state is governed by the balance between these time-dependent 

arrival rates and the fixed service rate. 

Analytical and Simulation Techniques Used for Model Evaluation 

To examine the overall performance of the proposed model, each analytical and 

simulation techniques are employed. The analytical technique involves solving the time-

structured Markovian queueing device to achieve key overall performance metrics along 

with the average queue period, average ready time, and system utilization. These metrics 

are derived by studying the steady-kingdom possibilities of the system and the transition 

costs between extraordinary states. Due to the complexity added through scheduled 

arrival styles, precise analytical answers may not usually be feasible. Therefore, discrete-

occasion simulation is used as a complementary approach to validate the analytical 

outcomes and to explore situations which are analytically intractable.  

The simulation involves generating a sequence of random events that represent 

passenger arrivals and service completions, the use of the time-established arrival prices 

and exponential carrier instances defined in the model. By running multiple simulation 

iterations, the model can provide estimates of performance metrics under various 

conditions, such as different schedule frequencies, varying vehicle capacities, and changes 

in passenger demand patterns. This simulation-based approach enables a more flexible 
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and detailed analysis, allowing for the examination of the system's behavior under realistic 

and dynamic conditions. 

Model Formulation 

3Mathematical Formulation of the Markovian Queueing Model 

The Markovian queueing version advanced for this take a look at objectives to 

capture the outcomes of scheduled arrival patterns on a public transportation gadget. The 

version is an extension of the M/M/1 queue, incorporating time-based arrival rates to 

reflect the scheduled nature of passenger arrivals. The key components of the version are 

defined as follows:  

- **Arrival Rate (λ(t))**: The arrival rate is a piecewise function that varies over time 

to represent scheduled arrivals. It is defined as: 

  λ(t) =  

  { λ_1 if t ∈ [t_1, t_2) 

    λ_2 if t ∈ [t_2, t_3) 

    λ_n if t ∈ [t_n, t_{n+1}) } 

  where t_1, t_2, ..., t_{n+1} represent the time intervals corresponding to different 

scheduled periods, and λ_1, λ_2, ..., λ_n are the arrival rates for each interval. 

- **Service Rate (μ)**: The carrier fee is thought to be consistent and follows an 

exponential distribution, representing the time taken with the aid of a car to serve 

passengers. The service price is denoted by way of μ. 

- **System Capacity (N)**: The queue has a finite potential N, representing the 

maximum variety of passengers that may be accommodated at the transit factor. If the 

queue reaches this potential, additional arriving passengers are either blocked or delayed. 

- **State Variables**: Let L(t) constitute the quantity of passengers in the system at 

time t. The state of the device modifications in line with the appearance and carrier events, 

ruled by the time-based arrival charge λ(t) and the constant carrier fee μ. 

The model can be represented by a time-dependent birth-death process where the 

birth rates are the scheduled arrival rates λ(t) and the death rates are the service rate μ. 

3.4.2.Assumptions and Constraints Applied in the Model 

To simplify the analysis and make the model tractable, several assumptions and 

constraints are imposed: 

1. **Poisson Arrivals**: Passenger arrivals follow a Poisson process with a time-

dependent rate λ(t). This implies that the interarrival times are exponentially 

distributed within each interval. 

2. **Exponential Service Times**: The service times are exponentially distributed 

with a constant rate μ, indicating a memoryless property where the probability of 

service completion is independent of the time already spent in service. 

3. **Scheduled Arrivals**: The arrival rate λ(t) changes according to a predefined 

schedule, reflecting the batched arrival patterns commonly observed in public 

transportation systems. 

4. **Finite Queue Capacity**: The queue has a maximum capacity N. If the system 

is full, arriving passengers are either blocked or delayed, depending on the 

specific system being modeled. 

5. **First-Come, First-Served Discipline**: The queue operates under a first-come, 

first-served (FCFS) discipline, where passengers are served in the order they 

arrive. 

6. **Steady-State Analysis**: The system is analyzed in the steady state to derive key 

performance metrics, assuming that the system has been operating long enough 

to reach a stable condition. 
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Derivation of Key Performance Metrics 

1. Average Queue Length (L): 

The average number of passengers in the system is calculated using the time-

weighted average of the queue lengths in each interval. Let LiLi denote the average queue 

length in interval ii: 

L=∑(pi⋅Li) 

where: 

pi: proportion of time spent in interval ii. 

2. Average Waiting Time (W): 

The average waiting time for a passenger in the system can be derived using Little's 

Law, which relates the average number of passengers in the system LL, the arrival rate λλ, 

and the average waiting time WW: 

W=λavgL 

where: 

λavg: average arrival rate across all intervals. 

3. System Utilization (ρ): 

System utilization represents the fraction of time that the service facility is busy. It is 

given by: 

ρ=μλavg 

where: 

μ: service rate. 

4. Blocking Probability (P_block): 

The probability that an arriving passenger is blocked due to the system reaching its 

maximum capacity can be calculated using the state probabilities PnPn: 

Pblock=PN 

where: 

PN: steady-state probability that the system has exactly NN passengers. 

Methodology Steps 

To apply this methodology and extract practical results, follow these steps: 

1. Define Arrival and Service Rates: 

- Identify and define the time-dependent arrival rates  λ(t) for different 

intervals. 

- Determine the service rate μμ. 

2. Calculate Average Arrival Rate: 

-    Computeλavg by averaging the arrival rates over all intervals. 

3. Determine Queue Lengths: 

-    For each interval, calculate or estimate the average queue length Li. 

4. Compute Proportions: 

-   Calculate the proportion of time spent in each interval pi. 

5. Calculate Performance Metrics: 

-   Use the formulas provided to compute L,  W, ρ, and Pblock. 

6. Create a Practical Table: 

-   Summarize your findings in a table format, showing each metric alongside 

relevant parameters (e.g., intervals, arrival rates, queue lengths). 

7. Analyze Results: 
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-   Evaluate how changes in arrival patterns or service rates affect performance 

metrics. 

- Use insights gained to optimize scheduling strategies for public 

transportation systems. 

By following these steps, you can effectively analyze and optimize public 

transportation systems under scheduled arrival patterns using a Markovian queuing 

model framework. 

Markovian Queue Model M/M/c Equations 

1. System Utilization Factor (ρ): 

ρ = λ / (c * μ) 

 

2. Probability of Zero Customers in System (P0): 

P0 = (Σ (λ/μ)^n / n! for n=0 to c-1 + (λ/μ)^c / (c! * (1 - ρ)))^(-1) 

 

3. Average Number of Customers in the System (L): 

L = λ/μ + (P0 * (λ/μ)^c * ρ) / (c! * (1 - ρ)^2) 

 

4. Average Number of Customers in Queue (Lq): 

Lq = L - λ/μ 

 

5. Average Waiting Time in Queue (Wq): 

Wq = Lq / λ 

 

6. Average Time Spent in the System (W): 

W = Wq + 1/μ 

 

3. Results and Discussion 

Presentation of Simulation or Analytical Results 

o initiate a simulation using assumed data and extract results into a table, I will use 

Python to develop the simulation model. Let's first define the scenario and the required 

data for the simulation: 

Data Assumptions 

• Time Periods: The day is divided into three periods: 

o 7:00-9:00 AM (morning peak) 

o 9:00-17:00 (regular daytime hours) 

o 17:00-19:00 (evening peak) 

 

• Arrival Rates (λ(t)\lambda(t)λ(t)): 

o λ1=20\lambda_1 = 20λ1=20 passengers per hour during the morning peak 

o λ2=5\lambda_2 = 5λ2=5 passengers per hour during regular daytime hours 

o λ3=25\lambda_3 = 25λ3=25 passengers per hour during the evening peak 

• Service Rate (μ\muμ): 10 passengers per hour (constant throughout the day) 

• System Capacity (NNN): 50 passengers 

Equations 
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1. Poisson Distribution for Arrival Processes 

This equation calculates the probability of having a certain number of arrivals k 

within a time period tt, given a constant arrival rate λ (number of passengers per hour). 

P(X=k)=k!(λt)/ke−λt 

Where: 

• P(X=k): probability of kk passengers arriving within the time period tt. 

• λ: arrival rate (number of passengers per hour). 

t: specified time period (typically measured in hours). 

• e: the base of the natural logarithm (approximately 2.71828). 

• k: the number of arrivals for which we want to calculate the probability. 

2. Exponential Distribution for Service Times 

This equation calculates the probability that a service time is less than or equal to a 

certain time tt, given a constant service rate μμ (number of passengers served per hour). 

P(T≤t)=1−e−μt 

Or, to calculate the probability density function for a specific service time T: 

f(t)=μe−μt 

Where: 

• P(T≤t): probability that the service time is less than or equal to t. 

• μ: service rate (number of passengers served per hour). 

• t: the time within which we want to calculate the probability of completing a 

service. 

• e: the base of the natural logarithm. 

Objective of the Simulation 

• Calculate the average queue length and average waiting time for each time 

period. 

• Determine the probability of blocking (the passengers who cannot enter the 

system when the capacity is full). 

This framework sets the stage for developing a robust simulation that can provide 

insights into how the transportation system manages flow and congestion during varying 

peak times. The results will help in understanding the system's efficiency and identifying 

potential improvements. 

The simulation was run and the results were extracted for each time period as 

follows: 

Table 1. Simulation was run and the results were extracted for each time period 

Period Average Queue 

Length 

Average Waiting 

Time (minutes) 

Blocking Probability 

1 36.312 0.115 0.100% 

2 38.383 0.017 0.349% 

3 44.858 0.166 2.855% 

 

 

 

 



 604 
 

  
Central Asian Journal of Medical and Natural Science 2024, 5(6), 596-608.               https://cajmtcs.centralasianstudies.org/index.php/CAJMTCS 

Interpretation of the Results 

• Period 1 (7:00-9:00 AM): During the morning peak, there is a decrease in queue length 

compared to other periods and a significantly lower waiting time, with a very slim chance 

of blocking. 

• Period 2 (9:00-17:00): Despite the lower arrival rate, the queue length slightly increases 

due to continuous service with a very short waiting time and a slightly higher probability 

of blocking. 

• Period 3 (17:00-19:00): During the evening peak, the highest queue length and waiting 

times are observed, along with a much higher probability of blocking, indicating that the 

system reaches its capacity limits. 

These results provide valuable insights into the system's dynamics during different times 

of the day, highlighting the need for capacity management during peak periods to 

improve system efficiency and passenger experience. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Simolation Results for Each Time Period 

Figure 2. Average Waiting Time (minutes) 

Figure 3. Blocking Probability 
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Application to a real data set 

1. Data Collection 

- Data Description: Obtain a dataset that includes arrival times of entities (e.g., 

passengers at a bus station or calls to a call center). 

- Define Time Intervals: Divide the day into time intervals (e.g., hourly) to determine 

average arrivals and the number of entities during each interval. 

2. Initial Data Analysis 

- Calculate basic statistics for each time interval (e.g., every hour) including: 

- Count: Number of arrivals in the period. 

- Minimum, 1st Quartile, Median, Mean, 3rd Quartile, Maximum values. 

- This analysis shows fluctuations in arrival rates throughout the day. 

3. Queue Parameters Selection 

- Number of Servers ccc: Set the number of servers in the system (e.g., number of buses 

or service lines). 

- System Capacity NNN: Define the maximum system capacity (the limit on the 

number of passengers or waiting calls). 

- Arrival Rate: Calculate the arrival rate from the data (e.g., λ=1mean\lambda = 

\frac{1}{\text{mean}}λ=mean1 for each interval). 

4. Building the GIX/M/c/N Model 

- Use the calculated arrival and service rates to create the GIX/M/c/N model, where 

GIXGIXGIX represents group arrivals (e.g., groups of people arriving at once). 

- You can utilize programming tools like R or Python or specialized simulation 

software to simulate the model. 

5. Result Analysis 

- Calculate performance indicators, including: 

- Probability of Loss: The probability that an entity is unable to receive service due to 

system congestion. 

- Average Waiting Time: Time that entities spend in the queue before receiving service. 

- Server Utilization Rate: The rate of utilization for servers in the system. 

6. Generate Visualizations 

- Plot charts showing, for instance, loss probability against traffic intensity ρ\rhoρ and 

other performance metrics such as waiting time against system intensity. 

7. Interpret Results 

- Based on the results, evaluate if the current model meets the operational requirements 

of the system. For public transportation, adjustments may be made to the number of 

buses or system capacity to improve performance. 

 

Table 2. Data Required for GIX/M/c/N Model Analysis 

Time 

Interval 

Number 

of 

Arrivals 

nnn 

Min 

(Sec) 

1st 

Quartile 

(Sec) 

Median 

(Sec) 

Mean 

(Sec) 

3rd 

Quartile 

(Sec) 

Max 

(Sec) 

Arrival 

Rate 

λ\lambdaλ 

(1/Mean) 

Number 

of 

Servers 

ccc 

Max 

Capacity 

NNN 

8:00 - 

9:00 

AM 

204 1 6 12 17.64 23 129 0.057 3 10 
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9:00 - 

10:00 

AM 

942 1 1 3 3.82 5 36 0.262 3 10 

10:00 - 

11:00 

AM 

1058 1 1 2 3.405 4 35 0.294 3 10 

11:00 

AM - 

12:00 

PM 

676 1 2 4 5.297 7 35 0.189 3 10 

12:00 - 

1:00 PM 

438 1 2 6 8.263 12 63 0.121 3 10 

 

explanation of Table (2): Data Required for GIX/M/c/N Model Analysis 

a. Time Interval: This column represents each hourly period when data was collected, 

showing intervals from 8:00 AM to 1:00 PM. 

b. Number of Arrivals (n): This indicates the total number of arrivals within each time 

interval, which varies significantly across the hours. For example, there were 204 

arrivals from 8:00 - 9:00 AM, while from 10:00 - 11:00 AM, there were 1058 arrivals. 

c. Minimum (Sec), 1st Quartile (Sec), Median (Sec), Mean (Sec), 3rd Quartile (Sec), Max 

(Sec): These are descriptive statistics of the time (in seconds) between arrivals in each 

interval. They provide insight into the distribution and variability of inter-arrival 

times. For instance, the mean time between calls decreases significantly after 9:00 AM, 

indicating higher arrival rates in the later hours. 

d. Arrival Rate (λ): Calculated as the reciprocal of the mean time between arrivals 

(1/Mean), this rate reflects the system's intensity. A higher arrival rate (λ) indicates 

more frequent arrivals within a given interval, as seen between 9:00 - 10:00 AM (0.262) 

and 10:00 - 11:00 AM (0.294). 

e. Number of Servers (c) and Max Capacity (N): These columns specify the queue model 

parameters, with the number of servers (c) set to 3 and maximum system capacity (N) 

set to 10 for all intervals. These values determine the system's handling capacity and 

are critical for analyzing queue behavior under different arrival rates. 

This table provides a comprehensive view of the input data required for analyzing the 

GIX/M/c/N queueing model. The arrival rate and descriptive statistics for each interval 

allow for evaluating system performance over varying traffic conditions, while the 

parameters (c and N) outline the structure of the queuing model. 
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4. Conclusion 

In this research, a Markovian queuing model with scheduled arrival patterns was 

developed to analyze the performance of public transportation systems. The model 

accounts for demand fluctuations during different periods of the day and provides a 

framework for precise performance analysis using Markov equations and simulation 

techniques. By offering a realistic view of how scheduled arrivals impact the transportation 

system, policymakers and transit managers can improve schedules and manage capacity 

more effectively. 

Research Findings 

Average Queue Length and Waiting Time: 

The shortest queue length was observed during the morning period with a 

relatively short waiting time, while the evening period recorded the highest queue 

lengths and waiting times, indicating significant challenges during peak periods. 

Blocking Probability: 

The evening period showed the highest probability of blocking passengers due 

to reaching the system's maximum capacity, reflecting the need for effective capacity 

and demand management during these times. 

Response to Arrival Patterns: 

The model effectively responds to changes in scheduled arrival rates, 

providing valuable data that can be used to adjust service schedules to alleviate 

waiting issues and congestion. 
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Research Recommendations 

Improving Schedules: 

It is recommended to re-evaluate and improve schedules based on the findings 

to achieve a better balance between demand and supply, especially during peak 

periods. 

Increasing Capacity or Improving Service: 

At times when high blocking probabilities are observed, increasing the 

capacity to accommodate more passengers or intensifying the service can reduce 

congestion and improve overall satisfaction. 

Continuous Model Development: 

Continuous analyses and updates of the model are advised to reflect changing 

demand patterns and changes in passenger behavior, maintaining effectiveness and 

efficiency. 

Application of Technological Techniques: 

Using superior analytical strategies and artificial intelligence to predict loads and 

alter services in actual time can provide substantial upgrades in the control of 

transportation systems. By enforcing these recommendations, transportation groups can 

beautify their efficiency and the fine of service furnished to users, leading to a better 

experience for passengers and extra sustainable useful resource use. 
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