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Abstract: The study of integro-differential equations plays a fundamental role in mathematical 

physics, particularly in the analysis of heat dissipation processes. The existence and uniqueness of 

solutions to such equations are crucial for ensuring the reliability of theoretical models. The Cauchy 

problem for the integro-differential heat dissipation equation can be reformulated into an equivalent 

Volterra integral equation. Traditional approaches employ fundamental solutions and functional 

series to establish solvability conditions. While various studies have explored heat conduction 

problems with memory effects, there remains a need for rigorous proofs ensuring the uniqueness 

of solutions in the space of Hölder functions. This study aims to establish a complete proof of the 

existence and uniqueness of the solution to the integro-differential heat dissipation equation by 

utilizing the method of successive approximations and integral inequalities. The research 

demonstrates that the functional series converges uniformly within the given domain, ensuring the 

existence of a solution. Furthermore, through the application of the Gronwall–Bellman inequality, 

it is shown that the solution is unique. The use of the Hölder function space in proving the 

uniqueness and existence of solutions offers a refined approach to analyzing heat dissipation 

equations, strengthening the theoretical foundations of inverse problem theory. The findings 

contribute to mathematical physics by providing a rigorous framework for modeling heat 

distribution processes and ensuring the stability of integro-differential equation-based models in 

applied sciences. 
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1. Introduction 

In the study of integro-differential equations, the Cauchy problem plays a crucial 

role in understanding complex physical and mathematical phenomena. These problems, 

particularly in the context of heat dissipation and inverse problem theory, provide 

fundamental insights into mathematical modeling and real-world applications. 

The focus of this study is on solving a specific Cauchy problem involving an integro-

differential equation with an integral term of the Volterra type. By transforming this 

problem into an equivalent integral equation, we aim to analyze the existence and 

uniqueness of the solution within the given function space. 

This paper explores the methodological framework necessary to establish the well-

posedness of the problem, leveraging integral transformations and approximation 

techniques. Through this approach, we investigate how the problem can be reformulated 

and solved efficiently while ensuring its stability and convergence. 
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(𝑥, 𝑦, 𝑡) ∈ ℝ𝑇
2 {(𝑥, 𝑦, 𝑡)|𝑥, 𝑦 ∈ ℝ2, 0 ≤ 𝑡 < 𝑇} we consider the problem of determining 

the function 𝑢(𝑥, 𝑦, 𝑡), in the following field:  

𝑢𝑡 − Δ𝑢 + ℎ(𝑥)𝑢(𝑥, 𝑦, 𝑡) = ∫ 𝑘

𝑡

0

(𝑥, 𝜏)𝑢(𝑥, 𝑦, 𝑡 − 𝜏)𝑑𝜏, (𝑥, 𝑦, 𝑡) ∈ ℝ𝑇
2 , (1) 

𝑢|𝑡=0 = 𝜑(𝑥, 𝑦), (𝑥, 𝑦) ∈ ℝ2,                                        (2) 

here  Δ: =
𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑦2 - Laplace operator.  

The problem of finding the function 𝑢(𝑥, 𝑦, 𝑡)  from the integro-differential equation 

(1) for a given function 𝑘 using the initial condition (2) is called the Cauchy problem [1]. 

Such problems are called proper problems in the theory of inverse problems. The solution 

of the Cauchy problem (1) and (2) is equivalent to an integral equation of the Volterra type. 

For this, we use the following formula: 

𝑧(𝑥, 𝑦, 𝑡) = ∫ 𝜑

ℝ2

(𝜉)𝐺(𝑥 − 𝜉; 𝑡)𝑑𝜉 + ∫ 𝑑𝜏

𝑡

0

∫ 𝐹

ℝ2

(𝜉, 𝜏)𝐺(𝑥 − 𝜉; 𝑡 − 𝜏)𝑑𝜉    (3) 

Formula (3) represents the solution to the Cauchy problem for the following variable 

coefficient heat dissipation equation:  

𝑧𝑡 − Δ𝑧 = 𝐹(𝑥, 𝑦, 𝑡), (𝑥, 𝑦) ∈ ℝ2, 𝑡 > 0, 

𝑧(𝑥, 𝑦, 0) = 𝜑(𝑥, 𝑦), 𝑥 ∈ ℝ2. 

 𝐺(𝑥 − 𝜉1, 𝑦 − 𝜉2; 𝑡 − 𝜏) =
1

4𝜋(𝑡−𝜏)
𝑒

−
(𝑥−𝜉1)2+(𝑦−𝜉2)2

4(𝑡−𝜏)   function   
𝜕

𝜕𝑡
− Δ is a fundamental 

solution of the differential operator with constant coefficients, where  

𝜉 = (𝜉1, 𝜉2),   𝑑𝜉 = 𝑑𝜉1𝑑𝜉2.   (3) Using formula (1), (2), we express the Cauchy problem in 

the form of the following Volterra integral equation of the second kind:  

𝑢(𝑥, 𝑦, 𝑡) = ∫ 𝜑

ℝ2

(𝜉)𝐺(𝑥 − 𝜉1, 𝑦 − 𝜉2; 𝑡)𝑑𝜉1𝑑𝜉2 + 

+ ∫ 𝑑𝜏

𝑡

0

∫ [∫ 𝑘

𝜏

0

(𝜉′, 𝛼)𝑢(𝜉, 𝜏 − 𝛼)𝑑𝛼 − ℎ(𝜉)𝑢(𝜉, 𝜏)]

ℝ2

× 

× 𝐺(𝑥 − 𝜉1, 𝑦 − 𝜉2; 𝜏)𝑑𝜉1𝑑𝜉2.                              (4) 

From ℝ𝑇

2
= {(𝑥, 𝑦, 𝑡)|𝑥, 𝑦 ∈ ℝ2, 0 ≤ 𝑡 ≤ 𝑇},  ℝ𝑇 , = {(𝑥′, 𝑡)|𝑥′ ∈ ℝ, 0 ≤ 𝑡 ≤ 𝑇},   we can 

know. 

2. Materials and Methods 

Lemma. Imagine, 𝜑(𝑥, 𝑦) ∈ 𝐻𝑙+2(ℝ2), ℎ(𝑥, 𝑦) ∈ 𝐻𝑙 (ℝ𝑇

2
), 𝑘(𝑦, 𝑡) ∈ 𝐻𝑙,𝑙/2(ℝ𝑇) and 

𝑝0T + 𝑝0
𝑇2

2!
< 1. Then the integral equation (4) has a unique solution 𝑢(𝑥, 𝑦, 𝑡) belonging to 

the class 𝐻𝑙+2,(𝑙+2)/2(ℝ𝑇

2
), where 𝑙 ∈ (0,1). 

Proof. In proving Maskur's lemma, we use the method of successive approximation 

[2]. To implement the principle of successive approximation for the integral equation (4), 

we construct the following sequence:  

𝑢0(𝑥, 𝑦, 𝑡) = ∫ 𝜑

ℝ2

(𝜉)𝐺(𝑥 − 𝜉1, 𝑦 − 𝜉2; 𝑡)𝑑𝜉1𝑑𝜉2 

𝑢1(𝑥, 𝑡) = ∫ 𝑑𝜏

𝑡

0

∫ [∫ 𝑘

𝜏

0

(𝜉1, 𝛼)𝑢0(𝜉1, 𝜉1, 𝜏 − 𝛼)𝑑𝛼 − ℎ(𝜉1, 𝜉1)𝑢0(𝜉, 𝜏)]

ℝ2

× 

× 𝐺(𝑥 − 𝜉1, 𝑦 − 𝜉2; 𝑡 − 𝜏)𝑑𝜉1𝑑𝜉2, 

𝑢1(𝑥, 𝑡) = ∫ 𝑑𝜏

𝑡

0

∫ ∫ 𝑘

𝜏

0

(𝜉1, 𝛼)𝑢0(𝜉1, 𝜉1, 𝜏 − 𝛼)𝐺(𝑥 − 𝜉1, 𝑦 − 𝜉2; 𝑡 − 𝜏)

ℝ2

𝑑𝜉 
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𝑢2(𝑥, 𝑡) = ∫ 𝑑𝜏

𝑡

0

∫ [∫ 𝑘

𝜏

0

(𝜉1, 𝛼)𝑢1(𝜉1, 𝜉1, 𝜏 − 𝛼)𝑑𝛼 − ℎ(𝜉1, 𝜉1)𝑢1(𝜉, 𝜏)]

ℝ2

× 

× 𝐺(𝑥 − 𝜉1, 𝑦 − 𝜉2; 𝑡 − 𝜏)𝑑𝜉1𝑑𝜉2, 

. . . . . . . . . . . . . . . . . . .. 

𝑢𝑚(𝑥, 𝑡) = ∫ 𝑑𝜏

𝑡

0

∫ [∫ 𝑘

𝜏

0

(𝜉1, 𝛼)𝑢𝑚−1(𝜉1, 𝜉1, 𝜏 − 𝛼)𝑑𝛼 − ℎ(𝜉1, 𝜉1)𝑢𝑚−1(𝜉1, 𝜉1, 𝜏)]

ℝ2

 

× 𝐺(𝑥 − 𝜉1, 𝑦 − 𝜉2; 𝑡 − 𝜏)𝑑𝜉1𝑑𝜉2,                             (5) 

. . . . . . . . . . . . . . . . . . .. 

Using 𝜑0 = |𝜑(𝑥, 𝑦)|𝑙, ℎ0 = |ℎ(𝑥, 𝑦)|𝑙, 𝑝0 = max{ℎ0, 𝑘0}, on ℝ𝑇
2  (5) we evaluate the 

functions 𝑢𝑚(𝑥, 𝑦, 𝑡)  defined using the integral in a modular way: 

|𝑢0(𝑥, 𝑦, 𝑡)|
𝐻

𝑙+2,
𝑙+2

2
≤ 𝜑0 

the same [3]  

|𝑢1(𝑥, 𝑦, 𝑡)|
𝐻

𝑙+2,
𝑙+2

2
≤ 𝜑0𝑝0 (t +

𝑡2

2!
), 

here 𝑘0: = |𝑘(𝑥, 𝑡)|𝑇
𝑙,𝑙/2

. We also perform the evaluation for 𝑢2(𝑥, 𝑦, 𝑡):  

|𝑢2(𝑥, 𝑦, 𝑡)|
𝐻

𝑙+2,
𝑙+2

2
≤ 𝜑0𝑝0

2 (t +
𝑡2

2!
)

2

, 

. . . . . . . . . . . . . . . . . . .. 

|𝑢𝑚(𝑥, 𝑦, 𝑡)|
𝐻

𝑙+2,
𝑙+2

2
≤ 𝜑0𝑝0

𝑚 (t +
𝑡2

2!
)

𝑚

, 

. . . . . . . . . . . . . ..  

 ∫ 𝐺

ℝ𝑛

(𝑥 − 𝜉1, 𝑦 − 𝜉2; 𝜃(𝑡))𝑑𝜉 = 1. (6) 

We can construct the following functional array:  

∑ 𝑢𝑗

∞

𝑗=0

(𝑥, 𝑦, 𝑡). 

Using the above estimates, we equate the resulting functional series with a numerical 

series in the domain (𝑥, 𝑦, 𝑡) ∈ ℝ𝑇
2  as follows: 

∑ |

∞

𝑚=0

𝑢𝑗(𝑥, 𝑦, 𝑡)| ≤ ∑ 𝜑0𝑝0
𝑚 (T +

𝑇2

2!
)

𝑚∞

𝑚=0

. 

By the condition of the theorem, the finite series converges [4]. The functional series 

is convergent according to the Weierstrass sign of the smooth convergence of functional 

series [5]. From this result, the sequence of functions 𝑢𝑗(𝑥, 𝑦, 𝑡)  defined using the integral 

equation (4) smoothly converges to some function 𝑢(𝑥, 𝑦, 𝑡)  defined in the function space 

𝐻𝑙+2,(𝑙+2)/2(ℝ𝑇
2 ) [6]. Thus, we have shown that (1)-(2) Cauchy problem has a solution 

belonging to the class 𝐻𝑙+2,(𝑙+2)/2(ℝ𝑇
2 ) [7]. 

3. Results and Discussion 

We have seen that the integral equation (4) has a solution [8]. Now we will show that 

this solution is unique [9]. For this, let us assume the opposite, that is, let the integral 

equation (4) have two exactly unequal solutions 𝑢1(𝑥, 𝑦, 𝑡) and 𝑢2(𝑥, 𝑦, 𝑡): 

𝑢1(𝑥, 𝑦, 𝑡) = ∫ 𝜑

ℝ2

(𝜉1, 𝜉1)𝐺(𝑥 − 𝜉1, 𝑦 − 𝜉2; 𝑡)𝑑𝜉1𝑑𝜉2 + 

+ ∫ 𝑑𝜏

𝑡

0

∫ [∫ 𝑘

𝜏

0

(𝜉1, 𝛼)𝑢1(𝜉1, 𝜉1, 𝜏 − 𝛼)𝑑𝛼 − ℎ(𝜉1, 𝜉1)𝑢1(𝜉1, 𝜉1, 𝜏)]

ℝ2

× 
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× 𝐺(𝑥 − 𝜉1, 𝑦 − 𝜉2; 𝑡 − 𝜏)𝑑𝜉1𝑑𝜉2 

and  

𝑢2(𝑥, 𝑦, 𝑡) = ∫ 𝜑

ℝ2

(𝜉1, 𝜉1)𝐺(𝑥 − 𝜉1, 𝑦 − 𝜉2; 𝑡)𝑑𝜉1𝑑𝜉2 + 

+ ∫ 𝑑𝜏

𝑡

0

∫ [∫ 𝑘

𝜏

0

(𝜉1, 𝛼)𝑢2(𝜉1, 𝜉1, 𝜏 − 𝛼)𝑑𝛼 − ℎ(𝜉1, 𝜉1)𝑢2(𝜉1, 𝜉1, 𝜏)]

ℝ2

 

× 𝐺(𝑥 − 𝜉1, 𝑦 − 𝜉2; 𝑡 − 𝜏)𝑑𝜉1𝑑𝜉2. 

Looking at the difference between the functions 𝑢1 and 𝑢2 we denote their difference 

by 

𝜔(𝑥, 𝑦, 𝑡) = 𝑢1(𝑥, 𝑦, 𝑡) − 𝑢2(𝑥, 𝑦, 𝑡) 

As a result  

𝜔(𝑥, 𝑦, 𝑡) = ∫ 𝑑𝜏

𝑡

0

∫ [∫ 𝑘

𝜏

0

(𝜉1, 𝛼)𝜔(𝜉1, 𝜉1, 𝜏 − 𝛼)𝑑𝛼 − ℎ(𝜉1, 𝜉1)𝜔(𝜉1, 𝜉1, 𝜏)]

ℝ2

 

× 𝐺(𝑥 − 𝜉1, 𝑦 − 𝜉2; 𝑡 − 𝜏)𝑑𝜉1𝑑𝜉2.                      (7) 

We obtain a homogeneous Volterra integral equation of the second kind [10]. For each 

assigned 𝑡 ∈ [0, 𝑇], we define the modular supremum of the function 𝜔(𝑥, 𝑡) with respect 

to 𝑥 ∈ ℝ𝑛 by 𝜔̃(𝑡), that is: 

𝜔̃(𝑡) = sup
𝑥∈ℝ2

| 𝜔(𝑥, 𝑦, 𝑡)|, 𝑡 ∈ [0, 𝑇]. 

Then from the integral equation (7)  

𝜔̃(𝑡) ≤ 𝑘0𝑇 ∫ 𝜔̃

𝑡

0

(𝜏)𝑑𝜏, 𝑡 ∈ [0, 𝑇] 

integral inequality is obtained [11]. According to the Growell–Bellman inequality, the 

last integral inequality has only one solution 𝜔̃(𝑡) ≡ 0  𝑡 ∈ [0, 𝑇] [12]. From this it follows 

that in the domain ℝ𝑇

2
 𝜔(𝑥, 𝑦, 𝑡) ≡ 0 or 𝑢1(𝑥, 𝑦, 𝑡) = 𝑢2(𝑥, 𝑦, 𝑡) [13]. Thus, the integral 

equation (4) has a [14] unique solution. The lemma is proven [15]. 

4. Conclusion 

The space of Hölder functions used in the proof of the main result of the existence 

and uniqueness of a proper solution to the two-dimensional integro-differential heat 

dissipation equation is presented, as well as an estimate of the Cauchy problem for the 

heat dissipation equation in the space of Hölder functions. 
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