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Abstract: The object of the study is the neural interfaces that control ro- botic devices using signals 

of brain origin recorded by electroencephalography. The subject of the study is the methods and 

algorithms for recognizing EEG patterns corresponding to the image of an imaginary motor team 

subject. The aim of the work is to develop a software and hardware complex for controlling robotic 

mechanisms, which allows to recognize EEG patterns of motor activity and adapt to a specific 

operator. Materials and methods.To solve the tasks in the work, methods of processing time series 

and creating artificial neural networks were used. Results. A device is proposed that is implemented 

on the platform of an analog-to-digital recorder such as Arduino uno. The device allows you to 

recognize EEG signals of brain activity and generate signals for controlling robotic mechanisms such 

as bionic prostheses, robotic wheelchairs, exoskeletons. Conclusions. Using the proposed device 

will allow people suffering from serious disorders of the motor system to improve their quality of 

life. 

Keywords: Robotic Mechanisms, Electroencephalogram (EEG) Pattern Recognition, Brain Rhythms, 
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1. Introduction 

The last decade of the twentieth century has signified by the rapid development of 

information technologies, which provide high-speed computers with large memory. 

Advances in digital signal processing, statistical analysis and promoted theoretical 

knowledge of neural networks have opened the prospect of practical implementation of 

various kinds of neural interfaces [1]. The neurointerface or brain-computer Interface (BCI) 

has found its application in various fields: neurological treatment, neurological training, 

neurological rehabilitation, etc., [2], [3]. For instance, there are many developments and 

open data in neurological rehabilitation that provide a system for controlling a computer 

or connected devices with brain-derived signals. Currently, the BCI is becoming a popular 

device widely used in modern robotics [4], [5], which allows a person to influence the 

environment with the effort of thought through decoding mental commands from signals 

in the electroencephalogram (EEG) or other methods of recording brain activity [6], [7]. 

Most of the work on the modern BCI aimed to improve the quality of life of people 

suffering from serious disorders of the motor system. Extensive work is underway to 

integrate BCI into robotic wheelchairs, robotic prostheses, and exoskeletons. However, BCI 
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can be also used by healthy people in such areas as controlling robotic devices such 

unmanned aerial vehicles, virtual reality games and simulators [8]. 

The current research intends to develop an integrated hardware and software 

complex designed to control robotic mechanisms. The advanced system emphases on 

identifying electroencephalogram (EEG) patterns associated with motor activity, which 

enables it to get used to to the specific needs and purposes of the operator. By leveraging 

real-time EEG data, the complex intends to improve the interaction between humans and 

robots, helping more intuitive and responsive control of robotic systems. This research 

grasps the prospective to improve applications in fields such as rehabilitation. 

Assistive technology, and human-robot collaboration, eventually enhancing the 

efficiency and usability of robotic mechanisms in different settings. 

2. Materials and Methods 

EEG rhythm is an electrical activity type of a constant frequency, which corresponds 

to a particular state of the brain and links to certain cerebral mechanisms. In this regard, 

the amplitude and its characteristic features can be changed over time with changing the 

functional activity of the brain [9]. As depicted in Fig. 1, the operation and the BCI 

architecture can be stated as follows; if the user intends to perform-an action, the electrical 

activity of the corresponding brain areas increases. These signals are record, amplify, 

digitize, and sent as digital data to a computer, where the signal features characteristic of 

a particular mental desire are calculated. Further, the set of features is divided into types, 

and the computer generates a command that controls the executive device (computer 

program, wheelchair, prosthesis, etc.). The user monitors the system's response to his 

mental action in real time, see Figure 1. 

  

 

Figure 1. The architecture of the BCI. 

 

Brain activity signals can be recorded in both invasive and non -invasive ways [10]. 

If bio potentials are removed from the surface of the head, then BCI is call non -invasive. 

When recording bio potentials from the cerebral cortex (ECoG) or from individual neurons 

in deep structures, BCI are known as invasive, as shown Figure 2. Despite the fact that 

invasive methods of BCI have greater recognition accuracy, their use strongly limited by 

the need for a complex surgery, as well as problems associated with the gradual 

overgrowth of electrodes with connective tissues. This leads over time to a significant 

deterioration in electrical contact with the brain, with its complete violation later. Due to 

these circumstances, non -invasive BCI has been the most developed. In most studies on 

encephalography, the EEG signal for all subjects are analyzed in classical frequency ranges 

borrowed from clinical practice: Gamma rhythm (γ-rhythm) is an oscillation frequency 

above 30 Hz, sometimes reaching 90 Hz, the amplitude usually does not exceed 15 μV. It 

is recorded in the precentral, frontal, temporal and parietal zones of the cerebral cortex. 

Alpha-rhythm-regular, sinusoidal, with a frequency of 8-13 Hz (fluctuations in 1 s) and an 

amplitude of 20-80 MV (microvolts). The alpha rhythm is recorded when bio potentials are 

diverted from all areas of the cerebral cortex, but more constantly — from the occipital and 
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parietal regions. Alpha rhythm is recorded in a person in conditions of physical and mental 

rest, always with the eyes closed and the absence of external stimuli. The beta rhythm has 

an oscillation frequency of 1435 Hz. The amplitude is 10-30 MV. It can be registered in any 

area of the brain, but it more pronounced in the frontal lobes. When opening your eyes, 

doing mental work, and other stimuli, the alpha rhythm quickly changes to the beta 

rhythm. 

  

 

Figure 2. Invasive and non-invasive methods of recording brain activity 

 

This phenomenon of changing is rare rhythm to a more frequent one called the 

activation reaction (or desynchronization). The theta rhythm has a frequency of 4-7 Hz and 

an amplitude of 100-150 MV. It is observing in a state of shallow sleep, with oxygen 

starvation of the brain, anesthesia. The delta rhythm is characterizing by slow oscillations 

with a frequency of 0.5-3 Hz, a high amplitude of 250- 300 MV, up to 1000 MV. This is 

specifically found in all areas of the brain, during deep sleep, as well as during anesthesia. 

Significant images can be extracted from EEG patterns using various classifiers 

(linear discrimination methods, support vectors, Bayesian classifiers, artificial neural 

networks, etc. [11]). As a rule, several characteristic features are associated with each 

channel (lead) in the EEG recording. Moreover, the greater the total number of features, 

the more examples are required for correct training of the classifier. However, in practice, 

obtaining large samples of training data can be difficult. In this regard, the selection of 

informative features is an important operation that allows us to extract features that do not 

carry “noise”, but information useful for a given task [12]. 

3. Results and Discussion 

The current research has conducted investigations of brain activity by using EEG 

methods. When registering the EEG, "10-20%" was used – a standard system for placing 

electrodes on the surface of the head, which is recommended by the International 

Federation of Electroencephalography and Clinical Neurophysiology. According to this 

scheme, 21 electrodes were applied to the surface of the head as represented in Fig. 3. It 

was found that the main brain activity associated with major motor skills (arm and leg 

movement) is in the range between 7 to 30 Hz, while the signal amplitude has not exceeded 

80 MV. The main disturbances were identified, which included disturbances caused by 

eye, electrode, and muscle movement. They were located in the region of lower frequencies 

- between 0.1 to 6 Hz. Therefore, it is necessary to filter the signals. It was decided to use 

signals from only eight active (AE1–AE8) and one passive electrode (PE), and monopolar 

lead was used, with the active electrodes located in the areas responsible for motor activity 

(central and parietal brain regions), and the passive electrode was attached to the subject's 
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earlobe, as shown Figure 3. The electrodes are highlighted in dark color) [13]. The amount 

of information received from these electrodes was quite enough to recognize most 

significant images: turning devices on/off, controlling the cursor, the model of the car, and 

the prosthetic arm. 

  

  

Figure 3. Electrode arrangement diagram. 

 

The block diagram of the developed device is shown in Figure 4. The device consists 

of two blocks-a block for processing analog and digital signals, respectively. 

 

 

 

Figure 4. Block diagram of a device for monitoring brain activity parameters. 

 

EEG signals are fed to the analog signal processing unit, where they are amplified by 

normalizing amplifiers (NU1–NU8), filtered using high-pass (HPF1–HPF8) and low-pass 

(LPF1–LPF8) filters. The normalizing amplifiers are assembled on instrumental amplifiers 

of the INA321 type. The filters are implemented on multichannel amplifiers of the MCP 

6004 type, the passband of the filters lies in the range from 6 to 30 Hz. The output signals 

of the analog signal processing unit are fed to the digital signal processing unit, 

implemented on the basis of an analog-to-digital recorder of the Arduino type [14]. The 

choice of this type of recorder is dictated by the presence of nodes for controlling robotic 

mechanisms and the accuracy of recording analog signals up to 0.1 %, which is sufficient 

to solve the task of recognizing EEG signals. The main node of the logger is an 8-bit 
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microcontroller of the AVR – ATmega328 family with a clock frequency of 16MHz. 

It includes everything necessary for convenient operation with the microcontroller: 14 

digital inputs/outputs (6 of them can be used as PWM outputs), 6 analog inputs, which can 

work with both internal and external reference voltage [15]. Figure 5 shows the results of 

experimental data obtained using the EEG electrodes used. 

 

 

Figure 5. Experimental EEG data. 

 

The digitized data from the recorder were fed to a laptop with specialized software 

(SW), installed on it, using the Korhonen artificial neural network to recognize EEG 

patterns. The choice of the network type is due to the fact that it is designed to search for 

patterns in large arrays of data, thereby allowing the classification of the user's mental 

commands. The sample of EEG signals was formed based on the readings of five people. 

For analysis, a fragment of the EEG signal recording with a duration of 30 s was selected. 

When forming the input of the neural network, a matrix was made up of the number of 

rows equal to the number of signals 8 and the number of columns equal to the number of 

samples in accordance with the selected sampling frequency (500 Hz) and recording time 

(30 s). To identify the EEG pattern, the matrix rows were divided into time segments with 

a duration of 2 s. Since the sampling frequency is 500 Hz, the length of each segment was 

1000 elements, therefore, the total number of segments was 15. In each time segment, the 

presence of an EEG pattern was checked using the fast Fourier transform algorithm. The 

value of the maximum amplitude was compared with the threshold value, if the amplitude 

value exceeded the threshold, then the EEG pattern was present, and 1 was written to the 

new matrix of information features, otherwise - 0. 

After processing all the data using a neural network, a vector of 15 values was 

created for each patient. The set of obtained vectors represented a training set for the neural 

network [16], [17]. The neural network, having trained on a set of patterns for each class of 

images of the user's mental commands, will be able to correctly distinguish them from each 

other. The BMC will perform recognition of EEG signals using a classifier trained on 

patterns, after which it will generate control actions for the robotic device. 

4. Conclusion 

The current research presented the general structure of brain-computer interfaces 

based on the recognition of types of movements that mentally provided to subjects. The 

main attention was paid to the methods of identifying the characteristic features of the 

EEG signal. Accordingly, the possibility of implementing neural interfaces based on an 

analog to digital recorder of the Arduino, widely used in robotics, were presented. Also, 
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the use of the selected artificial neural network made it possible to recognize the EEG 

pattern of a user's mental command with a sufficient degree of reliability. 
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