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Abstract: This research explores the effectiveness of using Padé approximations to enhance the 

accuracy of numerical solutions for Lane-Emden type differential equations. By applying the 

Adomian decomposition method to series solutions derived from previous studies, Padé techniques 

are integrated to obtain more precise approximate solutions. The supplied examples demonstrate 

that Padé approximations extensively outperform conventional strategies, yielding numerical 

results with smaller mistakes and nearer proximity to genuine solutions. Additionally, those 

approximations make a contribution to a higher information of the behavior of the studied 

structures by providing more stable and comprehensive answers. When in comparison to 

conventional answers, Padé approximations show off advanced performance throughout a number 

of situations, highlighting the importance of choosing the right numerical approach based on the 

nature of the hassle. This approach plays a crucial role in scientific and engineering fields that 

require high precision in modeling and analysis. Overall, the research emphasizes that Padé 

approximations represent an advanced and reliable option for addressing complex differential 

equations, opening new avenues for understanding mathematical and physical phenomena more 

effectively. 

Keywords: Padé Approximation, Lane-Emden Equations, Numerical Methods, Mathematical 

Modeling, Adomian Decomposition Method 

1. Introduction 

Padé approximation(Celik, E., Karaduman, E., & Bayram, M,2003), Turut, V., & 

Guzel, N,2012)) has been utilized in various fields for solving rational series. Studies have 

shown that Padé approximants outperform traditional series approximations, providing 

better numerical results compared to polynomial approximations. In this context, Wazwaz 

advanced a dependable algorithm based at the Adomian decomposition technique, which 

was carried out to Lane-Emden kind differential equations in papers (Wazwaz, A. M,2001). 

Successful collection answers for 2nd-order Lane-Emden type differential equations have 

been received. In this paper, Padé approximation is applied to those series answers derived 

by using Wazwaz in [5]. The algorithm, which relies on the Adomian decomposition 

method, is presented in (Yiğider, M., Tabatabaei, K., & Çelik, E. 2011), and section two of 

this paper will include brief information about this algorithm under the title "Analysis of 

the Method." This research aims to explore the effectiveness of Padé approximation in 

enhancing the accuracy of numerical solutions for Lane-Emden type differential equations, 

contributing to a better mathematical understanding of these equations and their 

applications in various fields. 
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Lane–Emden-type equations formulated as(Wazwaz, A. M,2002):  

𝑦" +
2

𝑥
 𝑦′ + 𝑓(𝑦) =  0,   0 < 𝑥 ≤ 1 

𝑦(0) = 𝐴,   𝑦′(0) = 𝐵.        (1) 

On the alternative hand, research have been carried out on some other class of 

singular initial value troubles of the form (Wazwaz, A. M,2002) 

𝑦′ +
2

𝑥
𝑦′ + 𝑓(𝑥, 𝑦) = 𝑔(𝑥),   0 < 𝑥 ≤ 1, 

𝑦(0) = 𝐴, 𝑦′(0)𝐵.         (2) 

In which A and B are constants, , f(x,y)is a non-stop actual-valued function, and g (x) 

is within the c language [0,1]. 

Equation (2) differs from the classical Lane–Emden type equations (1) in terms of the 

feature f (x,y) and the inhomogeneous time period g (x) (Wazwaz, A. M, 2002). 

The info concerning Lane–Emden kind equations are sourced from Wazwaz (2002). 

For a greater comprehensive information of those equations, extra data may be located in 

Wazwaz (2001) and Wazwaz (2002). 

2. Materials and Methods 

The Adomian decomposition approach is considered an effective technique for 

solving differential equations, as it simplifies complicated equations by means of 

transforming them into operator shape. This technique specializes in the best-order 

derivative within the equation, making the solution procedure less difficult. According to 

Wazwaz (Wazwaz, A. M,2002), this method requires defining the differential operator L 

in a way that takes into account the two derivatives present in the problem, in order to 

overcome the singular behavior that may arise in certain cases. 

The importance of this method will become in particular obtrusive in equations that 

show off unusual conduct or singular factors, as those factors can cause difficulties in 

locating solutions. By reformulating the equation in operator form, researchers can greater 

efficaciously address these challenges. Wazwaz (Wazwaz, A. M,2002) noted that rewriting 

equation (2) in the appropriate form can facilitate understanding of the solution behavior 

and enhance the accuracy of the results. 

Furthermore, the use of the Adomian decomposition approach allows researchers to 

explore a huge range of possible answers, providing them with effective gear for studying 

dynamic structures. This method has been supported by way of previous studies, which 

have demonstrated how it is able to be efficiently implemented in diverse 

fields(Shawagfeh, N. T, 1993, Adomian, G,1986). Wazwaz (Wazwaz, A. M,2002) 

rewrote (2) inside the shape 

𝐿𝑦 =  −𝑓(𝑥, 𝑦) + 𝑔(𝑥)        (3) 

where the differential operator L is defined by 

𝐿 = 𝑥−2 𝑑

𝑑𝑥
(𝑥2 𝑑

𝑑𝑥
).         (4) 

Wazwaz [5] therefore considered the inverse operator L-1 as a two-fold integral operatör 

defined by 

𝐿−1(. ) =  ∫ 𝑥−2 ∫ 𝑥2(. )𝑑𝑥𝑑𝑥.
𝑥

0

𝑥

0
        (5) 

Operating with L-1  on (3), Wazwaz [5] obtained 

𝑦(𝑥) = 𝐴 + 𝐵𝑥 + 𝐿−1𝑔(𝑥) − 𝐿−1𝑓(𝑥, 𝑦).      (6)  

The Adomian decomposition approach introduces the solution y(x) by an in countless 

collection of additives (Wazwaz, A. M,2002) 

𝑦(𝑥) =  ∑ 𝑦𝑛(𝑥),∞
𝑛=0           (7) 
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and the nonlinear function f (x, y) by an infinite series of polynomials 

𝑓(𝑥, 𝑦) =  ∑ 𝐴𝑛

∞

𝑛=0

 

Where the components yn(x) of the solution y(x) will be determined recurrently, and 

An represents the Adomian polynomials that can be constructed for various classes of 

nonlinearity according to specific algorithms set by Adomian (Adomian, G,1992 , 

Adomian, G,1994)), and Adomian and Rach (Adomian, G., Rach, R., & Shawagfeh, N. 

T,1995)), and calculated by Wazwaz (Wazwaz, A. M,2000). For a nonlinear function F(u), 

the first few polynomials are provided, reflecting the properties of this function. 

𝐴0 = 𝐹(𝑢0), 

𝐴0 = 𝑢1𝐹′(𝑢0), 

𝐴2 = 𝑢2𝐹′(𝑢0) +
𝑈1

2

2!
𝐹"(𝑢0), 

𝐴3 = 𝑢2𝐹′(𝑢0) + 𝑢1𝑢2𝐹(u0)+
(u1

3)

(3!)
 F" (u0), 

𝐴4 = 𝑢4𝐹′(𝑢0) + (
𝑢2

2

2!
+ 𝑢1𝑢2) 𝐹"(u0)+

(u1
2)

(2!)
 F" (u0) + 

1

4!
𝑢1

4 𝐹(𝑖𝑣)(𝑢0) , 

Substituting (7) and (8) into (6) wazwaz [5] obtained 

 

∑ 𝑦𝑛 (𝑥) = 𝐴 + 𝐵𝑥 + 𝐿−1𝑔(𝑥) − 𝐿−1

∞

𝑛=0

∑ 𝐴𝑛

∞

𝑛=0

 

          (10) 

To determine the components yn(x) , Wawaz [5] used Adomian decomposition 

method that suggests the use of the recursive relatio 

𝑦0(𝑥) = 𝐴 + 𝐵𝑋 + 𝐿−1𝑔(𝑥), 

 

𝑦𝑘+1(𝑥) + 𝐿−1(𝐴𝑘), 𝐾 ≥ 0, 

          (11) 

which gives 

 

𝑦0(𝑥) = 𝐴 + 𝐵𝑥 + 𝐿−1𝑔 (𝑥), 

 

𝑦1(𝑥) = 𝐿−1(𝐴0), 

 

𝑦2(𝑥) = −𝐿−1(𝐴1), 

 

𝑦3(𝑥) = −𝐿−1(𝐴2)           (12) 

Wazwaz (Wazwaz, A. M,2002) combined the scheme (12) with (9) that will enable us 

to determine the components yn(x) recursively, and hence the series solution of y(x) 

defined by (7) follows immediately. For numerical purposes, the n -term  approximant 

 

\∅𝑛 = ∑ 𝑦𝑘 ,

𝑛−1

𝑘=0

                                                                                                         (13) 

 

can be used to approximate the solution [5].  
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Padé approximation  

Consider a formal power series 

 

𝑓(𝑥) = 𝑐0 + 𝑐1𝑥 + 𝑐2𝑥2 +  ….                                                                              (14) 

 

with (𝑐0 ≠ 0) (Cuyt, A., & Wuytack, L, 1987). In this paper ∂p is written for the exact 

degre of a polynomial p and ω p for the order of a power series p [12]. (i.e the degree of 

the first nonzero term). 

 

The Padé approximation problem of order (m, n ) or [m,n] for f consists in finding 

polynomials 

 

𝑝(𝑥) =  ∑ 𝑎𝑖𝑥𝑖 , 𝑞(𝑥) =  ∑ 𝑏1𝑥𝑖

𝑛

𝑖=0

𝑚

𝑖=0

                                                                     (15) 

 

Such that in the power series (fq -p) (x) - the coefficients of xi for 0, .... m+n disappar, 

i.e (Cuyt, A., & Wuytack, L, 1987). 

 

𝜕(𝑝) ≤ 𝑚 

 

𝜕(𝑞) ≤ 𝑛 

 

𝜔(𝑓𝑞 − 𝑝) ≥ 𝑚 + 𝑛 + 1                                                                                        (16) 

 

Condition (16) is equivalent with the following two linear systems of equations 

 

{

𝑐0𝑏0 = 0                                                     
𝑐1𝑏0 + 𝑐0𝑏1 + 𝑎1                                                       

:                                                                     
𝑐𝑚𝑏0 + 𝑐𝑚−1𝑏1 + … + 𝑐𝑚−𝑛𝑏𝑛 = 𝑎𝑚  

(17) 

 

{
𝑐𝑚+1𝑏0 + 𝑐𝑚𝑏1 +  … + 𝑐𝑚−𝑛+1𝑏𝑛 = 𝑎𝑚

:                                                                      
𝑐𝑚+𝑛𝑏0 + 𝑐𝑚−𝑛+1𝑏1 + … + 𝑐𝑚𝑏𝑛 = 0

(18) 

 

with c1= 0 for i < 0 [12]. For n = 0 the systems of equations (18) is empty. In this case, 

a1 = c1 (i =0, ...., m) and b0 =1 satisfy (16), in the other words the partial sums of (14) 

solve the Padé approximation problem of order (m,0) . 

In general a solution for the coefficients a1 is known after substitution of a solution 

for the bi in the left hand side of (17). So the crucial point is to solve the homogeneous 

system of n equations (18) in the n +1 unknowns b1 . This system has at least one nontrivial 

solution because one of the unknowns can be chosen freely (Cuyt, A., & Wuytack, L, 

1987). 

In short, by solving the equations (17) and (18) the coefficients a1 and b1 are found. 

Then the Padé equations (15) are found. After finding these polynomials we get The Padé 

approximation of order (m, n) or [m, n ] for f. 
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3. Results and Discussion 

In this section Padé series solutions of differential equations of Lane-Emden type 

shall be illustrated by two examples. 

Example 4.1. 

Consider the nonlinear singular initial value problem[5]: 

𝑦" +
2

𝑥
 𝑦′ + 4(2𝑒𝑦 +  𝑒𝑦/2) = 0, 

y(0) = 0,  y'(0) = 0    (19) 

Wazwaz solved equation (19) by using the method that we mentioned in section 2 

and 

𝑦(𝑥) = 2 (𝑥2 −
1

2
𝑥4 +

1

3
𝑥6 −

1

4
𝑥8 +

1

5
𝑥10 −

1

6
𝑥12 + … . )  (20) 

Series solution has been obtained in(Wazwaz, A. M,2002). For more information 

about the solution of equation (19) by Wazwaz can be seen in (Wazwaz, A. M,2002). Exact 

solution for equation (20) is given as f𝑓(𝑥) =  −2 𝐼𝑛 (1 + 𝑥2) in (Wazwaz, A. M,2002). 

If the Padé approximation is applied to solution (20) then Padé series of different 

orders can be obtained. By applying Padé approximation the following Padé 

approximation of order (Wazwaz, A. M, 2001), and (Turut, V., & Guzel, N,2012)  for 

equation (19) are obtained: 

[4,4]𝑦(𝑥) =
−𝑥4−2𝑥2

1

6
𝑥4+𝑥2+1

      (21) 

[6,4]𝑦(𝑥) =
1

15
𝑥6−

1

15
𝑥2−2𝑥2

3

10
𝑥4+

6

5
𝑥2+1

     (22) 

[8,2]𝑦(𝑥) =
−

1

30
𝑥8+

2

15
𝑥6−

3

5
𝑥4−2𝑥2

4

5
𝑥2+1

     (23) 

To obtain the Padé series (21), (22), and (23) the solution tecnique that mentioned in 

section 3 for the linear systems of equations (17) and (18) is can be applied. If the numerical 

results are compared for example 1, the following tables and figures are obtained (Table 1 

and figure 1, figure 2, figue 3 ); 

Example 4.2. 

Consider the nonlinear singular initial value problem[5]: 

𝑦" +  
6

4
 𝑦′ + 14𝑦 =  −4𝑦 𝐼𝑛𝑦, 

y(0) = 1,   y' (0) = 0.    (24) 

Wazwaz solved equation (23) by using the method that we mentioned in section 2 

and 

𝑦(𝑥) = 1 − 𝑥2 +
1

2!
𝑥4 −

1

3!
𝑥6 +

1

4!
𝑥8 −

1

5!
𝑥10 + … … .. (25) 

Series solution has been obtained in [5]. More information about the solution of 

equation (24) by Wazwaz can be seen in [5]. Exact solution for equation (24) is given as 

𝑓(𝑥) = 𝑒−𝑥2 in [5]. 

If the Padé approximation is applied to solution (25) then Padé series of different 

orders can be obtained. By applying Padé approximation the following Padé 

approximation of order [4,4] , [6,4] and [8,2] for equation (25) are obtained: 

[4,4]𝑦(𝑥) =
1

2
𝑥4−

1

2
𝑥2+1

1

12
𝑥4+

1

2
𝑥2+1

    (26) 

[6,4]𝑦(𝑥) =
−

3

5
𝑥2+

3

20
𝑥4−

1

60
𝑥6+1

1

20
𝑥4+

2

5
𝑥2+1

  (27) 

[8,2]𝑦(𝑥) =
1−

4

5
𝑥2+

3

10
𝑥4−

1

15
𝑥6+

1

120
𝑥8

1

5
𝑥2+1

 (28) 
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To obtain the Padé series (26), (27), and (28) the solution tecnique that mentioned in 

section 3 for the linear systems of equations (17) and (18) is can be applied. If the numerical 

results are compared for example 2, the following tables and figures are obtained (Table 2 

and figure 3, figure 4 ,figure 5 ). 

4. Conclusion 

The numerical results presented in the tables (Table 1, Table 2) and figures (Figure 1, 

Figure 2, Figure 3, Figure 4, Figure 5, Figure 6) demonstrate that Padé approximations 

significantly outperform series approximations. Padé approximations yield accurate 

results with smaller error bounds, making them a reliable choice for obtaining better 

numerical values. 

Padé approximations are a powerful tool in the analysis of mathematical equations, 

characterized by their ability to provide precise solutions even in cases where series 

approximations may be less effective. By evaluating the consequences received from Padé 

approximations with those derived from collection approximations, it will become 

obvious that Padé offers better accuracy and higher performance throughout numerous 

situations. 

Furthermore, the use of Padé approximations can contribute to a deeper information 

of the behavior of the studied structures, as this method lets in for a extra comprehensive 

exploration of solutions. The results obtained via these approximations beautify the 

reliability of the mathematical fashions hired, permitting researchers to make informed 

selections based totally on numerical information. 

In light of the above, it is able to be concluded that Padé approximations constitute 

a favored alternative in lots of medical and engineering packages, presenting more 

accuracy and reliability as compared to series approximations. Therefore, adopting this 

method can cause stepped forward consequences and a deeper knowledge of the 

phenomena below investigation. 

 

Figure 1. Presents the exact solution of equation 19 in Example 1, along with the 

series solution y(x) from the same example. It additionally includes the [4,4] Padé 

approximation of the y(x) series answer, taking into account a contrast of the 

effectiveness of the special solutions 
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Figure 2. Illustrates the exact solution of equation 19 from Example 1, alongside the 

series solution. It additionally features the [6/4] Padé approximation of the y(x) collection 

answer, imparting a foundation for comparing the accuracy and performance of the 

numerous solution strategies employed. 

 

 

 

Figure 3. Exact solution of equation 19 in Example 1, series solution in Example 

[8/2] Padé approximation of y(x) series solution ( [8/2]y(x)). 

 

Table 1. Numerical and absolute error values for Example 1. 

x 

Exact 

solution 

f(x)=-

2ln(1+x2) 

y(x) [4/4] y(x) [6/4]y(x) [8/2] y(x) 
|-2ln(1+x)-

y(x)| 

|-2In(1+x2)-

(4/4)| y(x) 

|-2In(1+x2) -

[6/4-] y(x)| 

|-2(1+x2)-

[8/2] y(x)| 

1.0 
-

1.386294361 

-

1.566666667 

-

1.384615385 

-

1.386666667 

-

1.388888889 
0.180372306 0.001678976 0.000372306 0.002594528 

1.1 
-

1.585985031 

-

2.102643246 

-

1.582752086 

-

1.586813940 

-

1.592329689 
0.516658215 0.003232945 0.000828909 0.006344658 
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1.2 
-

1.783996079 

-

3.123842089 

-

1.778288340 

-

1.785660522 

-

1.798027896 
1.339846010 0.005707739 0.001664443 0.014031817 

1.3 
-

1.979082387 

-

5.177458734 

-

1.969699043 

-

1.982152956 

-

2.007651236 
3.198376347 0.009383344 0.003070569 0.028568849 

1.4 
-

2.170378536 

-

9.289331587 

-

2.155840308 

-

2.175658248 

-

2.224669607 
7.118953051 0.014538228 0.005279712 0.054291071 

1.5 
-

2.357309992 

-

17.28281250 

-

2.335877863 

-

2.365868263 

-

2.454659598 
14.92550251 0.021432129 0.008558271 0.097349606 

1.6 
-

2.539521090 

-

32.25683931 

-

2.509228476 

-

2.552718922 

-

2.705660640 
29.71731822 0.030292614 0.013197832 0.166139550 

 
-

2.716818316 

-

59.28058147 

-

2.675512194 

-

2.736324019 

-

2.988577883 
56.56376315 0.041306122 0.019505703 0.271759567 

1.8 
-

2.889126538 

-

106.3761022 

-

2.834513156 

-

2.916922342 

-

3.317627224 
103.4869757 0.054613382 0.027795804 0.428500686 

1.9 
-

3.056455714 

-

185.8766558 

-

2.986147188 

-

3.094836308 

-

3.710818814 
182.8202001 0.070338526 0.038380594 0.654363100 

2.0 
-

3.218875824 

-

316.2666667 

-

3.130434783 

-

3.270440252 

-

4.190476190 
313.0477909 0.088441041 0.051564428 0.971600366 

 

Table 1 affords the numerical values and absolute mistakes associated with fixing 

equation 19 in Example 1. It includes the exact answer for the feature f(x) = -2ln(1 x²), along 

with the collection answer y(x) and Padé approximations of levels [4/4], [6/4], and [8/2]. By 

reading the records, we can draw several conclusions approximately the accuracy of every 

of those answers. 

First, the precise solution f(x) serves as a reliable reference, providing steady effects 

across more than a few x values. For instance, at x = 1.0, the exact cost is -1.386294361, at 

the same time as the numerous approximations yield close results, indicating that the 

approximations can successfully simulate the general behavior of the function. However, 

as the fee of x increases, the gap between the approximate solutions and the precise answer 

widens, suggesting that the accuracy of the approximations can be greater affected at 

higher x values. 

When analyzing the Padé approximations, we find that the [4/4] approximation 

provides consequences very close to the exact solution, with a fee of -1.384615385 at x = 

1.Zero. However, other approximations, inclusive of [6/4] and [8/2], show greater 

variability in their accuracy. For instance, at x = 1.5, the [6/4] approximation yields -

2.365868263, that is further from the precise fee of -2.357309992, indicating that this 

approximation can be much less correct in this situation. 

Analyzing the absolute mistakes, we take a look at that the absolute variations 

among the exact answer and the approximations increase with growing x values. For 

example, at x = 2.0, the distinction among the exact answer and the [8/2] approximation 

reaches 0.971600366, indicating that the approximations might also end up much less 

correct in positive stages. This displays the demanding situations confronted by means of 

approximations in appropriately simulating the right conduct of mathematical functions 

at unique values. 

Furthermore, it's far major that the absolute errors increase significantly with better 

x values. At x = 1.Nine, the difference between the precise answer and the [6/4] 

approximation is zero.038380594, suggesting that the approximations may additionally 

end up less accurate in positive ranges. This shows that the use of Padé approximations 

requires warning, particularly when dealing with larger x values. 

Overall, the results highlight the importance of selecting the best approximation 

based at the range of values being studied. While Padé approximations provide exact 

effects, the exact solution remains the maximum reliable. Therefore, it's miles essential to 
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consider the accuracy of the approximations when the use of them in sensible programs, 

mainly in cases that require high precision. 

 

Figure 4. Shows the exact solution of equation 24 in Example 2 alongside the series 

solution y(x). It also presents the [4/4] Padé approximation of the y(x) series, enabling 

comparison of accuracy and effectiveness between the exact solution, the series, and the 

Padé approximation. 

 

Figure 5. Exact solution of equation 24 in Example 2, y(x) series solution in 

Example 2 [6/4] Padé approximation of y(x) series solution ( [6/4]y(x)). 
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Figure 6. displays the exact solution of equation 24 in Example 2 along with the 

series solution y(x). Additionally, it includes the [6/4] Padé approximation of the y(x) 

series, allowing for a comparison of the approximation’s accuracy relative to the exact 

solution and the original series. 

 

Table 2. Numerical and absolute error values for Example 2. 

x 
Exact 

solution 

𝑓(𝑥) = 𝑒−𝑧2
 

y(x) [4/4] y(x) [6/4] y(x) [8/2]y(x) |𝑒−𝑧2
𝑦(𝑥)| 

|𝑒−𝑧2[4
/4]𝑦(𝑧)| 

|𝑒−𝑧2[6
/4]𝑦(𝑧)| 

|𝑒−𝑧2[8
/2]𝑦(𝑧)| 

1.0 0.3678794412 0.3666666667 0.3684210526 0.3678160920 0.368055556 0.0012127745 0.0005416114 0.0000633492 0.0001761144 

1.1 0.2981972794 0.2944915132 0.2993664381 0.2980269029 0.2987030382 0.0037057662 0.0011691587 0.0001703765 0.0005057588 

1.2 0.2369277587 0.2266972365 0.2392223161 0.2365174319 0.2382346335 0.0102305222 0.0022945574 0.0004103268 0.0013068748 

1.3 0.1845195240 0.1585875572 0.1886734331 0.1836195652 0.1876085900 0.0259319668 0.0041539091 0.0008999588 0.0030890660 

1.4 0.1408584209 0.00797438939 0.1478754855 0.1390367461 0.1476245364 0.0611145270 0.0070170646 0.0018216748 0.0067661155 

1.5 0.1053992246 -0.0298583982 0.1165644172 0.1019593614 0.1192753233 0.1352576228 0.0111651926 0.0034398632 0.0138760987 

1.6 0.07730474044 -0.2060926500 0.09416871108 0.07119154532 0.1041751814 0.2833973904 0.01686397064 0.00611319512 0.02687044096 

1.7 0.05557621261 -0.510307484 0.07991329748 0.04527586141 0.1050518714 0.5658836966 0.02433708487 0.01030035120 0.04947565879 

1.8 0.3916389510 -1.043643114 0.07290832093 0.02260627889 0.1262915342 1.082807009 0.03374442583 0.01655761621 0.08712763910 

1.9 0.02705184687 0.07221992578 0.07221992578 0.001523767826 0.1745266278 1.994719296 0.04516807891 0.02552807904 0.1474747809 

2.0 0.01831563889 -3.533333333 0.07692307692 0.01960784314 0.2592592593 3.551648972 0.05860743803 0.03792348203 0.2409436204 

 

Table 2 presents the numerical values and absolute error values for Example 2, where 

the exact solution is given by the function(𝑓(𝑥) = 𝑒−𝑧2 ). The table includes the series 

solution ( y(x) ) and various Padé approximations: [4/4], [6/4], and [8/2]. This 

comprehensive dataset allows for a detailed analysis of the accuracy of each 

approximation compared to the exact solution. 

The actual answer(f(x)=〖e^(-z)〗^2 ) is a well-known feature that describes the 

exponential decay of a squared variable. As ( z ) increases, the cost of ( f(x) ) decreases 

swiftly, which is obvious in the values presented within the table. For instance, at ( z = 1.0 

), the exact value is approximately 0.3678794412, and it decreases to 0.01831563889 at ( z = 



 445 
 

  
Central Asian Journal of  Mathematical Theory and Computer Sciences 2025, 6(3), 435-446      ttps://cajmtcs.centralasianstudies.org/index.php/CAJMTCS 

2.Zero ). This behavior is feature of exponential features, wherein the output diminishes 

appreciably because the input increases. 

The series answer ( y(x) ) offers an approximation of the precise solution. At ( z = 1.0 

), the collection solution yields zero.3666666667, that's pretty close to the exact value, 

resulting in a small absolute mistakes of 0.0012127745. This suggests that the series answer 

is effective for small values of ( z ). However, as ( z ) increases, the accuracy of the collection 

answer begins to decline. 

For example, at ( z = 1.Four ), the collection solution drops to zero.00797438939, that 

is substantially decrease than the precise value of zero.1408584209, leading to a bigger 

absolute errors of zero.0611145270. This trend keeps as ( z ) will increase, with the series 

answer diverging greater from the exact answer, in particular obtrusive at ( z = 1.6 ) and 

beyond, wherein the collection solution turns into bad. 

The Padé approximations provide a extraordinary method to approximating the 

exact answer. The [4/4] approximation yields values which might be generally toward the 

exact solution than the collection solution, particularly for decrease values of ( z ). For 

instance, at ( z = 1.0 ), the [4/4] approximation gives 0.3684210526, ensuing in a minimum 

absolute error of 0.0005416114. This demonstrates the effectiveness of the [4/4] Padé 

approximation in shooting the behavior of the precise answer. 

As we pass to the [6/4] and [8/2] approximations, we have a look at varying degrees 

of accuracy. The [6/4] approximation at ( z = 1.0 ) yields zero.3684210526, with a totally 

small mistakes of zero.0000633492, indicating high accuracy. However, as ( z ) will 

increase, the overall performance of those approximations starts offevolved to differ. For 

example, at ( z = 1.5 ), the [6/4] approximation offers zero.1165644172, that's in the direction 

of the precise cost than the series solution however nonetheless results in a major mistakes 

of 0.1352576228. 

The [8/2] approximation shows a comparable trend, presenting values that are 

generally closer to the exact solution than the collection solution, but with growing 

mistakes as ( z ) rises. At ( z = 2.Zero ), the [8/2] approximation yields zero.2592592593, 

leading to a good sized absolute blunders of 0.2409436204, indicating that at the same time 

as Padé approximations can be powerful, additionally they have limitations at better 

values of ( z ). 

The absolute errors for each method reveal critical insights into their overall 

performance. For decrease values of ( z ), both the series answer and Padé approximations 

maintain fantastically small mistakes. However, as ( z ) increases, the errors for the series 

answer develop notably, particularly after ( z = 1.5 ). The Padé approximations, whilst 

initially extra correct, additionally start to diverge from the exact answer, particularly the 

[8/2] approximation, which indicates the most important mistakes at better ( z ) values. 

At ( z = 1.8 ), absolutely the errors for the collection answer reaches 1.082807009, 

indicating a sizeable deviation from the exact solution. This highlights the demanding 

situations of the usage of series expansions for approximating capabilities that showcase 

fast adjustments, along with exponential decay. 
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