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Abstract: This research presents a fractional discrete collision spectral method (FSCM) for solving 

fractional-order partial differential equations (FPDEs) such as the Borgers equation and the Fokker-

Planck equation. The method is based on constructing exact fractional numerical derivatives using 

a fractional Lagrange interpolator that satisfies the Kronecker delta property at collision points. 

Fractional PDEs are developed based on several proposed points, including the roots of fractional 

Jacobian polynomials, achieving exponential convergence in solutions. The study includes an 

analysis of numerical matrices of fractional derivatives and a comparison of applications in multiple 

time-invariant and constant-time problems. The method is characterized by ease of implementation 

and reduced computational cost compared to traditional methods. 

Keywords: Fractional Partial Differential Equations, Collision Spectral Method, Fractional Lagrange 

Interpolators, Exponential Convergence, Borgers Equation And Fokker-Planck Equation 

1. Introduction 

The concept ofifractionalicalculusiand fractional-order differential operators are 

used in the modeling of various physical systems, including viscous fluid flows caused 

byithe cumulativeimemory effectjofiwall-friction media (whether porousi or fractured), 

bioengineering applications, and viscoelastic materials. Additionally, anomalous diffusion 

with nonexponential relaxation patterns governs the transport dynamics in these complex 

systems. It is discovered that a time-fractional diffusion equation governs the evolution 

ofithe probability density function of these non-Markovian systems. Formulas for 

fractional partial differential equations (FPDEs) such the Burgers, Fokker-Planck, 

advection-diffusion, and fractional-order multitier equations have been quickly 

generalized from the idea of fractional derivatives[1]. 

It is not an easy task to convert the numerical methods and references used for 

differential equations of integer order to fractional differential equations [2] .Due to their 

dependency on long-range histories, approximating fractional-order systems is 

computationally intensive, which is the fundamental issue in simulation[3]. While 

numerical techniques in this field have evolved rapidly in recent years, their history is 

brief. The Legendre spectral collocation method for solving fractional differential 

equations is based on expanding the solution using a Legendre manifold and applying a 

collocation method using relevant nodes such as Gauss-Legendre points[4]. 

Spectral collocation is a numerical method that approximates the solution by 

expanding the solution function with basis functions (polynomials such as Chebyshev or 
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Legendre polynomials) [5] ,Specific polynomials (collocation points) that are more 

demanding than simple points or Lobatto polynomials[6]. 

Fractional Chebyshev collocation is a numerical method for solving fractional 

differential equations where the solution is approximated using Chebyshev polynomials 

and the equations are applied at Chebyshev–Gauss–Lobatto points[7]. 

Fractional Lagrange Interpellants 

To avoid assessing the inner products in spectral techniques of the Galleria and PG 

types, typical collocation methods rely on interpolation operators. Finally, {xi}N is defined 

as aicollection of interpolation points for this purpose [2]. 

I=1, from which the related Lagrange interpellants are derived. Also, in'order to 

create a collocation technique, the residualimust disappear on theisame grid points, which 

are referred to as collocation points. {𝑦𝑖}𝑁 

I=1. The positions where the residuals vanish need not coincide with the spots where 

the interpolation takes place. An innovative spectral theory has provided us with the 

fractional by which we resolve FSLPs in collocation schemes[8]. 

𝐷𝑡 
ῐ

0
 µ(x ,t)=£ѵµ(𝑥 , 𝑡),         𝑖𝑥 ∈ [ −1 ,1], 𝑡 ∈ [′0 , 𝑇],ѵ                                           … (1) 

µi(x ,0) = g (x), 

µ (-1' , t) =0 ,              'ѵ  ∈ (0,1), 

µ (-1' ,t) =µ ('1 ,t) =0  ,  'ѵ∈ (1 ,2),  

The fractional differential operator is denoted by£ѵ , and ῐ  is an element of the 

interval∈ ( 0 ,1) . "Where ѵ" means the highest fractional order. In terms of novel fractal 

basis functions that do not contain polynomials, we express the answer to (1). These are 

known as Jacobi polyfractonomials. For first-kind FSLP, these are the Eigen functions that 

can be formally derived as 

𝑃𝑛
𝛼,𝛽,µ

('x) =(1 + 𝑥)−𝛽+µ−1 𝑃𝑛−1
𝛼−µ+1 ,−𝛽+µ−1

 (x) ,    ix∈ [−1,1],                              ...(2) 

In the case when−1 ≤ 𝛼 < 2 − µ , 𝑎𝑛𝑑 − 1 ≤ 𝛽 < µ − 1 the standard Jacobi 

polynomials are denoted as 𝑃𝑛−1
𝛼−µ+1 ,𝛽+µ−1

. When used as basic functions, t Eigen functions 

with α=β have the same approximation feature. So, the polyfractonononmial Eigen 

functions that correspond to 𝛼 = 𝛽 = −1 are considered as 

Where ('x) are theistandardiJacobiiPolynomialsiin which iµ∈ (0,1),  

 𝑖𝑃𝑛
µ

 
(1) (x) =(1 + 𝑥)µ  𝑃𝑛−1

−µ,µ(x)  ,  i x∈ [−1,1]                                                        …(3) 

In both that Riemann-Lowville and theiCaputo meanings, theileft-sidedjfractional 

derivativeiof (3) is provided by the Eigen solution characteristics in [9]. 

𝐷𝑥
µ

−1
  ( 𝑃𝑛

µ
 

(1) (x))=
Г(𝑛+µ)

Г(𝑛)
𝑃𝑛−1(𝑥) ,                                                               …(4) 

𝑃𝑛−1(′𝑥)represents a Legendreipolynomialjof order ('n-1). In ourifractional 

icollocation approach, such pursueisolutions[10]. 

𝑢𝑁 ∈ 𝑉𝑁
µ

= 𝑠𝑝𝑎𝑛{ 𝑃𝑛
µ

 
(1) (𝑥), 1 ≤ 𝑛 ≤ 𝑁} ,                                                          … (5) 

1µ ∈ (0,1), 𝑖𝑥 ∈ [−1,1] , of the from 

𝑢𝑁(𝑥) = ∑ ŭ𝑗 𝑃𝐽
µ

 
(1) (𝑥)    

𝑁
𝑗=1  .                                                                      ... (6) 

Another way to describe this polyfractonomial modal expansion is as a nodal 

expansion, which looks like 

𝑢𝑁(𝑥) = ∑ 𝑢𝑁
𝑁
𝑗=1   (𝑥𝑗)ℎ𝑗

µ
(𝑥)  ,                                                                   …(7) 

The following four interpolation points are used to create the fractional Lagrange 

interpolants: ℎ𝑗
µ
(𝑥), where x ranges from −1 = 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑁 = 1. . They are defined as 

interpolants ℎ𝑗
µ
(𝑥)) of fractional order (N+µ-1). 

ℎ𝑗
µ(𝑥) = (

𝑥−𝑥1

𝑥𝑗−𝑥1
)

µ

∏  (
𝑥−𝑥𝑘

𝑥𝑗−𝑥𝑘
)𝑁

𝑘=1
𝑘≠𝑗

  ,2 ≤ 𝑗 ≤ 𝑁                                                          … (8) 
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Prior to solving (1), we need to set the superscript µ interpolation parameter. It 

should be noted that a generic FPDE can, in fact, be linked to many fractional 

differentiation ordersѵ𝑘 , where 𝑘 = 1,2,3, … 𝐾 and K is a positive integer. The fractional 

orders ѵ𝑘, which are provided in the problem, will be used to determine how to set µ..[11]. 

Notice 1. Due toithe homogeneous iDirichlet boundaryicondition (8)'in (1), weican 

only build the fractional Lagrange interpolantsℎ𝑗
µ(𝑥) for j=2,3…ℎ𝑗

µ(𝑥), 𝑗 = 12,3 … 𝑁 − 1 

whenithe highest fractionaliorder 𝑖ѵ ∈ (0,1), andiwe impose 𝑖𝑢𝑁(±1) = 0 .. At the 

interpolation point, the fractional interpolants displayed in equation (8) are equal to 

ℎ𝑗
µ(𝑥𝑘) = ẟ𝑗𝑘, which is the Kroenke delta property; nonetheless, their values fluctuate as an 

apolyfractonomial function of 𝑥𝑘 .The interpolants are used asifractional nodalibasis 

functions in equation (7), where they imitate the fundamental structure of the Eigen 

functions (3), which areiused as fractionalimodalibases in the expansion. 

FractionaliDifferentiationiMatrix 𝑫𝝈 ,′𝟎 < 𝝈 < 𝟏 

We such that differentiationimatrix 𝐷𝜎  of aigeneral fractionaliorder 𝜎 ∈ (′0,1) 

.Weisubstitute (8) in'(7) and take away the σ the orderifractionaliderivative as  

𝐷𝑥
𝜎  𝑢𝑛 (𝑥) = 𝐷𝑋

𝜎[∑ 𝑢𝑁(𝑥𝑗)𝑁
𝑗=2 ℎ𝑗

µ(𝑥)]−1
 

−1
                                                                     …(9) 

= ∑ 𝑢𝑁(𝑥𝑗)

𝑁

𝑗=2

𝐷𝑥
𝜎

−1
 [ℎ𝑗

µ(𝑥)] 

= ∑ 𝑢𝑁(𝑥𝑗) 𝐷𝑋
𝜎 [(

𝑥 − 𝑥1

𝑥𝑗 − 𝑥1

)

µ

 ∏ (
𝑥 − 𝑥𝑘

𝑥𝑗 − 𝑥𝑘

)

𝑁

𝑘=1
𝑘≠𝑗

]−1
 

𝑁

𝑗=2

 

= ∑ 𝑢𝑁(𝑥𝑗)

𝑁

𝑗=2

 𝐷𝑋
𝜎[(1 + 𝑥)µ𝒢𝑗]𝑎𝑗−1

  

Where  𝑎𝑗 =
1

(𝑥𝑗−𝑥1)
µ  ,and 𝒢𝑗 = ∏ (

𝑥−𝑥𝑘

𝑥𝑗−𝑥𝑘
)𝑁

𝑘=1
𝑘≠𝑗

 ,𝑗 = ′2,3, … . , 𝑁 , are allipolynomials 

ofiorder (′𝑁 − 1) ,that can be represented iexactly in terms ofiJacobi  polynomialsi 𝑃𝑛−1
−µ.µ(𝑥) 

as 

𝒢𝑗 = ∑ 𝛽𝑛
𝑗
𝑃𝑛−1

−µ,µ(𝑥)𝑁
𝑛=1  …….                                                                                          …(10)  

𝐷𝑥
µ
𝑢𝑁(𝑥)−1

 = ∑ 𝑢𝑁(𝑥𝑗) 𝐷𝑥
𝜎[(1 + 𝑥)µ ∑ 𝛽𝑛

𝑗𝑁
𝑛=1 𝑃𝑛−1

−µ,µ(𝑥)]𝑎𝑗−1
 𝑁

𝑗=2                                … (11) 

= ∑ 𝑢𝑁(𝑥𝑗  )𝑎𝑗 ∑ 𝛽𝑛−1
𝑗

𝐷𝑥
𝜎[(1 + 𝑥)µ𝑃𝑁−1

−µ,µ(𝑋)]−1
 𝑁

𝑛=1
𝑁
𝑗=2  by (3) 

= ∑ 𝑢𝑁(𝑥𝑗)𝑎𝑗  ∑ 𝛽𝑛
𝑗
 𝐷𝑥

𝜎[ 𝑃𝑛
µ(𝑥) 

(1) ]−1
.𝑁

𝑛=1
𝑁
𝑗=2  by (4). 

(I)The particularicase 𝜎 = 𝑖µ ∈ (0,1) in this case theiproperty (4) and obtain that  

𝐷𝑋
𝜎𝑢𝑁(𝑥) = ∑ 𝑢𝑁

𝑁
𝑗=2 (𝑥𝑗)𝑎𝑗 ∑ 𝛽𝑛

𝑗
[

Г(𝑛+µ)

Г(𝑛)
] 𝑃𝑛−1(𝑥)𝑁

𝑛=1−1
                                               … (12) 

Consequently ,we take the interpolation and collocation points to be identical ,also 

recalling Remark 1 and by evaluating 𝐷𝑥
µ
𝑢𝑁(𝑥)−1

  at the collocation points {𝑥𝑖}𝑖=2
𝑁  we obtain 

𝐷𝑥
µ
𝑢𝑁  (𝑥)⃒𝑥𝑖

= ∑ 𝑢𝑁(𝑥𝑗)𝑁
𝑗=2−1

 𝑎𝑗  ∑ 𝛽𝑛
𝑗

[
Г(𝑛+µ)

Г(𝑛)
 𝑃𝑛−1(𝑥𝑖)]   

𝑁
𝑛=1                                        … (13) 

= ∑ 𝐷𝑗=2
µ

 𝑢𝑁(𝑥𝑗)

𝑁

𝑗=1

 

Where 𝐷𝑖𝑗
µ

 
  are the entries of the(𝑁 − 1) × (𝑁 − 1) fractional differentiation matrix 𝐷µ 

obtained as 

𝐷𝑖𝑗
µ

= ′
1

(𝑥𝑗+1)
µ ∑

Г(𝑛+µ)

Г(𝑛)
𝑁
𝑛=1 𝛽𝑛

𝑗
𝑃𝑛−1(𝑥𝑗)  ……….  (14)  

(II)The generalicase 𝜎 ∈ (′0,1) .The caseiis importants when that fractional  

differentialioperator is associatediwith multiple fractionaliderivatives ofidifferent order . 
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To obtain that fractional differentiation matrixiin this case ,weiperform an fine mapping 

from 𝑖𝑥 ∈ [−1,1]  to𝑠 ∈ [0,1] through 𝑖𝑠 =
(𝑥+1)

2
 and rewrite  (11) such as 

𝐷𝑥
𝜎𝑢𝑁(𝑥) = ∑ 𝑢𝑁(𝑥𝑗)𝑎𝑗  ∑ 𝛽𝑛 

𝑗
𝐷𝑥(𝑠)

𝜎 [ 𝑃𝑛
µ(𝑥(𝑠)) 

(1) ]−1
 𝑁

𝑛=1
𝑁
𝑗=2−1

  …  (15) 

= ∑ 𝑢𝑁(𝑥𝑗)𝑎𝑗 ∑ 𝛽𝑛
𝑗

(
1

2
)

𝜎
𝑁
𝑛=1

𝑁
𝑗=2  𝐷𝑆

𝜎[ 𝑝𝑛
µ

(𝑥(𝑠)) 
(1)

0
  , 

Where 𝑃𝑛
µ

 
(1) (𝑥(𝑠)) denotes the shifted basis that can be represented as  

𝑃𝑛
µ
(𝑥(𝑠)) 

(1) = 2µ ∑ −1𝑛+𝑞−1′ (
𝑛 − 1 + 𝑞

𝑞
) ′ (

𝑛 − 1 + µ
𝑛 − 1 − 𝑞

) 𝑠𝑞+µ𝑛−1
𝑞=0  ... (16) 

Substituting (16) into (15) we have 𝐷𝑗=2
𝜎 (𝑢𝑁)−1

 (𝑥) = 

2µ−𝜎 ∑ 𝑢𝑁(𝑥𝑗)𝑎𝑗 ∑ 𝛽𝑛
𝑗 ∑ −1𝑛+𝑞−1 (

𝑛 − 1 + 𝑞
𝑞

) (
𝑛 − 1 + µ
𝑛 − 1 − 𝑞

) 𝐷𝑠
𝜎[𝑠𝑞+µ]0

 𝑛−1
𝑞=0

𝑁
𝑛=1

𝑁
𝑗=2   

In which 𝐷𝑠
𝜎[𝑠𝑞+µ]0

  can that evaluatediexactly by (8) ,andifinally by inverse 

transformation we obtain thatiσ-fractional derivativeiof theiapproximateisolution such as  

𝐷𝑥
𝜎𝑢𝑁(𝑥) = ∑ 𝑢𝑁(𝑥𝑗)[𝑎𝑗 ∑ 𝛽𝑛

𝑗
 ∑ 𝑏𝑛𝑞(′𝑥 + 1)𝑞+µ−𝜎𝑛−1

𝑞=[𝜎−µ]
𝑁
𝑛=1 ]𝑁

𝑗=2−1
  .. 17 

Iniwhich [𝜎 − µ] denotes that ceilingiof σ-µ and 

𝑏𝑛𝑞 = 𝑖−1𝑛+𝑞−1 (
1

2
)

𝑞

   
   

(
𝑛 − 1 + 𝑞

𝑞
) (′

𝑛 − 1 + µ
𝑛 − 1 − 𝑞

)
Г(𝑞+µ+1)

Г(𝑞+µ−𝜎+1)
  … (18) 

Now that ,similarly byievaluating 𝐷𝑥
µ

𝑢𝑁(𝑥) −1
  at theicollocation point {𝑥𝑖}𝐼=2

𝑁 , 

𝐷−1
 

𝑥
𝜎𝑢𝑁(𝑥)⃒𝑥𝑖

= ∑ 𝑢𝑁(𝑥𝑗) [𝑎𝑗 ∑ 𝛽𝑛
𝑗

𝑁

𝑛=1

∑ 𝑏𝑛𝑞(′𝑥𝑖 + 1)𝑞+µ−𝜎

𝑛−1

𝑞=[𝜎−µ]

]

𝑁

𝑗=2

 

= ∑ 𝐷𝑖𝑗
𝜎 𝑢𝑛(𝑥𝑗)

𝑁

𝑗=2

 

 

Example 2: Caputo fractional differential equation: 

C D^{\alpha} u(x) = f(x), \quad x \in (0,1), \quad 0 < \alpha < 1^{} [4]. 

With an initial condition: 

u(0) = 0 

Methods: 

a. Use the representation of N-th degree Chebyshev polynomials. 

b. Use Caputo operation matrix for fractional derivative calculations. 

c. Choose Chebyshev-Gauss-Lobatto points as collocation points. 

d. Form an algebraic system to solve for the coefficients of u_j [7]. 

Example 1: Nonlinear fractional differential equation: 

C D^{\alpha} u(x) = u^2(x) + x^2, \quad x \in (0,1), \quad u(0) = 0, \quad 0 < \alpha < 1^{} 

\quad 0 < \alpha < 1 

Methods: 

a. Use Chebyshev spectral rectification. 

b. Convert fractional derivatives into operation matrices. 

c. Use Newton's method (or Newton-Raphson method) to solve nonlinear systems. 

d. Better accuracy than finite differential methods [5]. 

2. Conclusion 

For the purpose of solving both that steady-state and the time-dependentiFPDEs[12], 

we created an exponentially accurate FSCM in this research.Our next step was to introduce 

fractionaliLagrange interpolants that meet the Kroenke deltaiproperty at 

certainicollocation locations. We built it according to a spectral theory for FSLPs that was 

developed [3]. In order to examine the fractional collocation method's numerical 
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performance, we also solved many linear and nonlinear FPDEs and produced the related 

fractional differentiation matrices. In order to do this, we presented other potential options 

for theicollocation interpolation points, namely, the roots of the Jacobiipolyfractonomial 

𝑃𝑀
µ(𝑥) 

(1)   and that roots of 𝐷𝑥
µ
[ 𝑃𝑀

µ
 

(1) ]−1
  which are the fractional extrema of 

theipolyfractonomial.iWe contrastedithese novel subsets ofiresidual-vanishing points 

with the previously established conventional collocation sites for interpolation, including 

equidistant points, roots of Chebyshevipolynomials, and extrema of 

Chebyshevipolynomials [4]. We quantitatively proved that, out of all the solutions that 

lead to the minimum conditioninumber in the corresponding linearisystem and the 

quickest decline of theiL^∞-norm error, the roots of 𝐷𝑥
µ
[ 𝑃𝑀

µ(𝑥) 
(𝑥) ]−1

  are the best. Time and 

the  space fractionaliadvectionidiffusion equation [13]. space fractionalimultitier FPDEs, 

space fractional Burgersiequation, and other steady-state issues were taken into account. 

We found numerical evidence that the fractional collocation approach converges 

exponentially [14]. We go over the results of FSCM and how they stack up against other 

methods. Among existing finite difference schemes and high-order Galerkin spectral 

techniques for first-order partial differential equations (FPDEs), our FSCM scheme has 

several benefits, such as (i) ease ofiimplementation, (ii) reduced computingicost, and (iii) 

exponentialiaccuracy. Our joint work on these aspects is detailed below[15]. 
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