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Abstract: Vaultra-Fredhom Integrated integrated integrated equations and non-linear cores have 

extensive applications in modelling complex physical problems such as heat transfer, fluid mobility 

and image processing. Because of their special complications, these equations are difficult to solve 

analytically and require effective and stable numerical methods to get an accurate solution. The 

main objective of this research is to investigate the existence and specificity properties of the two-

dimensional Volterra peace-to-life solution. In this connection, the taum method was used as an 

accurate numerical technique to solve both linear and non-linear equations. In this study, integrated 

equations were converted to algebraic systems, and their numerical solutions were achieved 

effectively using base functions and a series of appropriate mats. The results suggest that the taum 

method is able to show high stability in producing accurate solutions for complex equations under 

different border conditions and solving equations with a cynical core. This research is used 

especially in engineering and physics in non -linear and complex problems. 

Keywords: Integral Equations, Volterra-Fredholm, Singular Kernels, Tau Method, Numerical 

Methods 

1. Introduction 

Volterra-Fredholm, especially in two-dimensional and other forms, plays an 

important role in modeling complex scientific problems such as heat transfer, fluid 

mobility, biological models, and imaging [1]. These equations, which combine memory-

based structures (Volterra) with stable, domain-bound operators (Fredholm), include an 

unknown work under the integrated symbol so that they can analyze and calculate their 

theoretical and numerical challenges [2]. When these equations have a unique core, the 

solution becomes even more important for the development of precise analysis of behavior 

and stable numerical methods [3]. The equations with an eccentric core are often seen in 

analyzing actual physical applications such as thin film phenomena, magnetic flow and 

wave integration, and their solutions can provide deep insight into non-larynx 

phenomena[4]. 

Because of their special mathematical properties, the mixture of existence and unique 

principles of accurate and effective numerical techniques to solve this class of problems 

[5].  Thus, a fundamental first step to promote both theoretical and practical knowledge in 

integrated equations [6] examines existence and uniqueness and offer a strong technique 

for numerical solutions to these equations.  Solving a two-dimensional Voltra-Fredhom 

integrated equation with a single core gives several difficulties [7].  On the one hand, 

ecosystem's existence in the core reduces the effectiveness of the traditional numerical 
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approach to convergence and stability [8].  On the other hand, the calculation of the two -

dimensional structural method increases dimensions and complexity.  In addition, these 

equations are often unhealthy and cannot be resolved directly using the correct adjustment 

of regularity or a minor approach [9]. 

In these situations, another crucial barrier to provide a more accurate answer [10] is 

a universal and extendable structure for theoretical examination of survival and 

uniqueness.  Several research on the analysis and numerical solution of two-dimensional 

Voltra-Fredhom integrated equations have lately attracted attention; when the topic from 

each particular viewpoint [11], [12]. These studies have laid a basis for developing more 

accurate methods [13], and offer different theoretical and numerical approaches. For 

example, Micula [14] suggested a numerical method based on the estimates of sequential 

value-type to solve second-to-dimensional Vaultra-Fredhome equations.  This method 

achieved fast convergence compared to the classic Picard method using a customized 

Cubcher formula and a sophisticated recurrent structure. In that study, existence and 

specificity under specific mathematical conditions were proven with theoretical error 

estimates and convergence analysis. Numerical results demonstrated high accuracy and 

remarkable stability of the proposed method under different conditions [14]. 

On the other hand, Shalangwa et al. [15] used multidimensional Voltra-Fredeom-

Predom-Fedhome integrated equations based on Bernstein functions. By converting the 

integrated equation to an algebraic system and applying the Gauss elimination algorithm, 

he developed a numerical model in many examples and faster convergence for an accurate 

solution as the projection parameter NN increased. These results confirmed the 

effectiveness of the algorithm proposed to improve accuracy and reduce calculation costs 

[15]. 

In another study [16], introduced a hybrid method by combining numerical 

regularization and the Chebyshev Wavelet algorithm to solve a system of integrated 

equations for the first and second CRI. In this method, the first type of sickness type 

Equation was previously converted into a well-grounded second time, and then a stable 

numeric algorithm was designed using chebashev waves. Complete confirmation through 

theoretical convergence analysis and numerical examples have shown that the proposed 

algorithm not only produces very accurate solutions, but also effectively handles the 

equations with eccentricity or [16]. 

Despite this effort, a clear difference remains in the strict theoretical examination of 

existence and the uniqueness of two-dimensional Voltra-peace equations with a clear core 

[17]. In addition, most of the existing numerical methods( are designed for simple cases or 

continuous cores and lack stability when facing eccentricities and two-dimensional 

structures. This research difference emphasises the requirement for a comprehensive study 

with a common theoretical and numerical approach.The main objective of this study is to 

examine the existence and specific properties of the solution with eccentric cores for two-

dimensional Volterra-Fredholm integration equations, as well as develop and analyse 

more stable and precise numerical methods to solve them. At the same time, the innovation 

of this research focuses on the development of algorithms that are capable of solving the 

equations with eccentric cores accurately. Under the following section study, the model's 

mathematical structure, theoretical analysis of existence and specificity, design and 

implementation of numerical methods and execution of numerical examples present the 

results obtained from the execution of examples. 

2. Tau Method for Linear Integral-Differential Equations 

2.1. Problem 

Volterra and Fredholm Types of Integrated-Power Equations Play an important role 

in physical and engineering problems and are widely used to model phenomena such as 

heat transfer, wave spread and biological events. These equations are usually presented as 
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either non-linear or linear equations and the combination of integrated operators. In this 

section, the linear integrated and unfair equations will be examined as follows: 

(1)  
𝐿𝑦(𝑥): = 𝐷𝑦(𝑥) + 𝜆 ∫ 𝐾1

𝑏

𝑎

(𝑥, 𝑡)𝑦(𝑡) 𝑑𝑡

+ ∫ 𝐾2

𝑎

𝑥

(𝑥, 𝑡)𝑦(𝑡) 𝑑𝑡 = 𝑓(𝑥) 

In this equation: 

a. 𝑫𝒚(𝒙) represents a differential operator, typically involving various derivatives of the 

function 𝐲(𝐱). 

b. 𝑲𝟏(𝒙, 𝒕)  and 𝑲𝟐(𝒙, 𝒕) are the kernels of the integral equations, appearing in two 

separate integrals. 

c. 𝛌 is a constant that acts as a weighting parameter in the equation. 

d. 𝐟(𝐱) is a given function on the right-hand side of the equation, and the objective is to 

find the solution 𝐲(𝐱) using numerical methods. 

This equation can be challenging to compute, particularly in the context of an 

eccentric or pathological core, as it involves both integrals and derivatives.   Consequently, 

addressing such issues necessitates the application of appropriate numerical methods. 

  This study use the numerical technique of the taum method to resolve linear 

integral equations.   This technique enables the treatment of the equation's solution as a 

sequence, so converting it into a flexible system of algebraic equations.   In this context, the 

provided function F(x), together with the kernels K1(x, t) and K2(x, t), must be accurately 

computed using polynomial or other basis functions to facilitate the relaxation of the 

equation.   Typically originating from the Tau chain, these approximations facilitate the 

numerical problem-solving process.. 

2.2. Theorems 

This section will handle integrated and unwanted equations by covering significant 

concepts and results on the taum method.   This method is based on the use of three basic 

simple matrixes, usually used to solve both intended and undesirable equations.. 

2.2.1. Basis Matrices 

The three simple matrices used in the Tau method are as follows: 

1. The matrix 𝝁, which is defined as: 

(2)  𝜇 = (

0 1 0 0 ⋯
0 0 1 0 ⋯
0 0 0 1 ⋯
⋯ ⋯ ⋯ ⋯ ⋯

) 

This matrix is used to model the behavior of the unknown function y(x)y(x) in the 

Tau method. 

2. The matrix 𝜼, which is defined as: 

 

(3)  𝜂 =

(

 
 

0 0 0 0 ⋯
1 0 0 0 ⋯
0 2 0 0 ⋯
0 0 3 0 ⋯
⋯ ⋯ ⋯ ⋯ ⋯)

 
 

 

The matrix 𝜂 is used for performing calculations related to derivatives and for 

transforming the equation into a system of algebraic equations. 
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3. The matrix 𝜄, which is used for integration operations: 

(4)  𝜄 =

(

 
 

1 0 0 0 ⋯
0 1 0 0 ⋯
0 0 1 0 ⋯
0 0 0 1 ⋯
. . . . . . . . . . . . . . .)

 
 

 

This matrix is particularly used when converting integrals into numerical forms and 

solving equations. 

2.2.2. Differential Operator 

To apply the differential operator to the unknown function 𝑦(𝑥), the matrices 𝜂 and 

𝜇 are used. In general, the differentiation is performed as follows: 

(5)  
𝑑

𝑑𝑥
𝑦(𝑥) = 𝑎𝑇𝜂𝑋 

Here, 𝒂𝑻 is a vector of coefficients, and 𝑋 is a vector of variables, which is expressed 

as a series of basis functions. This formula is used for numerical computations of the 

derivatives of the unknown function 𝑦(𝑥). 

2.2.3 Integration 

To convert the integral operator into a numerical form, the matrix 𝜇 is used. 

Specifically, the integration operation is performed as follows: 

(6)  ∫ 𝑦(𝑥) 𝑑𝑥 = 𝑎𝑇𝜄𝑋 

 

This formula is used to convert the integrals present in the integral equations into a 

computable format. Here, 𝒂𝑻 represents the coefficients of 𝑦(𝑥) and 𝑋 is a set of variables. 

2.2.4 Converting the Integral-Differential Equation to a System of Algebraic Equations 

One can construct a system of algebraic equations from the integral-differential 

equation.  The problem is transformed into a solvable system of linear equations by means 

of the matrices μ and η together with other transformations.  The change follows here.: 

 

(7)  𝑎𝑇𝐵 = 𝛾0 

Here γ_0 is a vector of boundary constants and B is a matrix produced from other 

function values and boundary conditions.  The solution y(x) of the integral-differential 

equation is found following application of the boundary conditions to the system of 

algebraic equations. 

2.2.5 Converting Integrals to Numerical Form 

In integral equations such as 

∫ 𝐾1

𝑏

𝑎

(𝑥, 𝑡)𝑦(𝑡) 𝑑𝑡 

Numerical methods are used to convert the integrals into matrix formulas. For this 

purpose, the matrices 𝜇 and 𝜂 are used in numerical computations. The resulting formula 

takes the following form: 

(8)  
∫ 𝐾1

𝑥

𝑎

(𝑥, 𝑡)𝑦(𝑡) 𝑑𝑡

= 𝑎𝑇𝜄𝑋𝑛 

And for the Volterra integral part, we similarly have: 

(9)  
∫ 𝐾2

𝑏

𝑎

(𝑥, 𝑡)𝑦(𝑡) 𝑑𝑡

= 𝑎𝑇𝑉𝑋𝑛 

Here, 𝑋𝑛represents the series of basis functions used to approximate the solution of 

the equation. 
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Ultimately, these theorems and formulae illustrate how the Tau approach may 

convert intricate integral-differential problems into a system of algebraic equations, 

employing straightforward matrices for numerical computations and resolving the 

integral equations.  The application of matrices μ, η, and ι facilitates the precise resolution 

of integral equations.. 

2.3. Numerical Formulation of the Problem 

The numerical framework for solving linear integrated and unwanted equations of 

the rope approach is presented in this section.   The goal is to reduce the integrated and 

unwanted problem in the appropriate collection of algebraic equations.   Originally, it was 

written numerically, the problem is then solved in numerical methods. 

The general form of the integral-differential equation is as follows: 

(10) 𝐿𝑦(𝑥):= 𝐷𝑦(𝑥) + 𝜆 ∫ 𝐾1

𝑏

𝑎

(𝑥, 𝑡)𝑦(𝑡) 𝑑𝑡 + ∫ 𝐾2

𝑎

𝑥

(𝑥, 𝑡)𝑦(𝑡) 𝑑𝑡 = 𝑓(𝑥) 

Using the Tau approach, all equation components must first be stated in terms of 

matrices and vectors before one may solve this problem.  Using polynials, the Tau 

approach approximates the function y(x) and converts the equation into a system of 

algebraic equations. 

2.3.1. Converting the Integral Equation to Matrix Form 

First, the integral-differential equation is transformed into the following matrix form 

utilizing the outcomes of the earlier phases.  Correctly expressed as a vector b^T f derived 

from matrix multiplication, the function f(x): 

(11)  𝑓(𝑥) = 𝑏𝑇𝑓𝑉−1 

Here: 

a. 𝑓(𝑥) is a given function. 

b. 𝒃𝑻is a vector of coefficients, used to transform the equation into an algebraic system. 

c. 𝑽−𝟏 is the inverse of the matrix 𝑉, which is used in solving the system of equations. 

2.3.2. Algebraic System of Equations 

To solve the integral-differential equation, the equation must first be converted into 

a system of algebraic equations. Using the basis matrices and boundary conditions, the 

following algebraic system is obtained: 

(12)  𝑎𝑇𝐵𝑗 = 𝛾𝑗 , 𝑗 = 0,1, … , 𝜈 − 1 

(13) 𝑎𝑇𝜋𝑖 = 𝑓𝑏𝑖 , 𝑖 = 0,1, … , 𝑑𝑓 

(14) 𝑎𝑇𝜋𝑖 = 0, 𝑖 ≥ 𝑑𝑓 + 1 

In the above equations: 

a. 𝐵 is a matrix derived from the boundary conditions. 

b. 𝝅𝒊 are the vectors corresponding to the boundary conditions and other variables of the 

equation. 

c. 𝒇𝒃𝒊 are the values on the right-hand side of the equations. 

d. 𝜸𝒋 are the constants related to the boundary conditions. 

e. 𝒂𝑻 is the solution vector, which contains the coefficients of the function 𝑦(𝑥). 

2.3.3. Transforming to Matrix Form for Solving the System 

We employ matrices B and G to convert the system of equations into a solvable 

format.  These matrices ultimately result in a system of linear equations structured as 

follows: 

(15) 𝑎𝑇𝐵𝐺 = 𝛾𝑏 

Here: 

a. 𝐵 is the matrix representing the boundary conditions. 



 551 
 

  
Central Asian Journal of  Mathematical Theory and Computer Sciences 2025, 6(3), 546-560     ttps://cajmtcs.centralasianstudies.org/index.php/CAJMTCS 

b. 𝐺 is another matrix that appears in the system of equations. 

c. 𝜸𝒃 is a vector containing the right-hand side values of the equations. 

This change converts the integrated derivative problem effectively into a system of 

algebraic equations, which can later be solved by means of numerical methods.   Finally, 

after converting the integrated difference to an algebraic system, it can be solved using 

various numerical techniques, such as Gossian Aboice or Matrix-based methods.   The 

approximate solution y (x) is achieved as a coefficient vector A^t, with improvement in 

accuracy, number of chain entries or the degree of selected base function increases.. 

2.4. Numerical Examples 

Example 1: Fredholm–Volterra Integro-Differential Equation 

In this example, the Fredholm–Volterra integro-differential equation is given as follows: 

(16) −𝑦′′(𝑥) + 𝑥𝑦′(𝑥) + 𝑦(𝑥) − ∫ 𝑥2
1

0

𝑡3𝑦(𝑡) 𝑑𝑡 + ∫ 𝑥𝑦
0

𝑥

(𝑡) 𝑑𝑡 = −
1

8
𝑥5 −

3

2
𝑥3 − 123𝑥2 + 5𝑥 − 1 

With boundary conditions 𝒚(𝟏) = −𝟏 and 𝒚(𝟎) = −
𝟏

𝟐
 , the exact solution of the 

equation is given by: 

𝑦(𝑥) = −
1

2
𝑥3 + 𝑥 − 1 

To solve this equation using the Tau method and appropriate matrices and vectors, we 

reach the following numerical formulation. 

Assuming 𝑛 =  10, the equation should be solved with sufficient accuracy. 

In this example, various matrices are used to solve the equation. First, the matrix 𝑏 is 

defined as follows: 

(17) 𝑏 =

(

 
 
 
 
 
 
 
 
 
 
 
 

1 0 0 0 0 0 0 0 0 0
3

4
0 0 0 0 0 0 0 0 0

0 2 −1 0 0 0 0 0 0 0
1

2
0 0 0 0 0 0 0 0 0

0 −2 0
17

6
0 0 0 0 0 0

0 1 3 0 0 0 0 0 0 0

0 −6 −1
7

4
0 0 0 0 0 0

0 0 −9 0
5

6
0 0 0 0 0

−20 0 6 0 0 0 1 0 0 0
0 −30 0 7 0 0 0 0 0 −42)

 
 
 
 
 
 
 
 
 
 
 
 

 

 

Then, the matrix 𝐵 is defined as follows: 

(18) 𝑏𝐵 =

(

 
 
 
 
 
 
 

1 1 0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0 1 0
1 1 1 0 1 0 1 0 1 0
0 1 0 1 1 0 1 0 1 0
1 1 0 0 1 0 1 1 0 1
0 1 1 0 1 1 0 0 1 0
0 0 1 0 1 0 1 0 0 1
0 0 1 1 0 1 1 0 0 1
0 0 1 0 0 0 1 1 0 1
0 1 0 1 1 0 0 1 0 1)
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Finally, the vector 𝛾 is defined as follows: 

(19) 𝑏𝛾 =

(

 
 
 
 
 
 
 
 
 

−1
−1
2

−1
5

−123
140
−3
2
0

−1
8 )

 
 
 
 
 
 
 
 
 

 

The coefficient vector of the unknowns, obtained from the approximate solutions of 

the equation, is given as follows: 

(20) 𝑎𝑛
𝑇 = [−1,1,0, −

1

2
, 0,0,0,0,0,0] 

The equation in this vector contains the coefficients of the variable, which is used to 

calculate the numerical solution . 

Finally, the estimated solution of the equation that follows is achieved, using the 

above matrix and rope method to solve the Fredhom-Valtra Integra differential equation.: 

(21) 𝑦𝑛(𝑥) = −
1

2
+ 𝑥 −

1

2
𝑥3 

This approximated solution, obtained using the matrices and the Tau method, 

closely approximates the exact solution 𝒚(𝒙) = −
𝟏

𝟐
𝒙𝟑 + 𝒙 − 𝟏. Calculation accuracy 

increases with the number of terms in the series or degree of base function. As a result, the 

example shows that the TAU method can be used effectively to solve complex integr-

derivative equations and to get an accurate numerical solution for equations with different 

boundary conditions.. 

3. Nonlinear Integral Equations 

3.1. Existence and Uniqueness in Nonlinear Integral Equations 

In non -linear integrated equations are one of the basic problems that should be 

solved the existence and uniqueness of the solution. This is important because, to use 

numerical methods, we must first ensure that there is at least one unique solution in the 

equation. 

Suppose the nonlinear integral equation is given in the following form: 

(22) 𝑦(𝑥) = 𝑓(𝑥) + ∫ 𝐾
𝑏

𝑎

(𝑥, 𝑡, 𝑦(𝑡)) 𝑑𝑡 

Here, f (x) is a given function, and k (x, t, y (t)) is a nonlinear core that depends on y 

(t), indicating that the equation is not linear.In order to prove the existence and uniqueness 

of the solution for nonlinear integrated equations, the following conditions must be 

fulfilled: 

1. Continuity of the function 𝒇(𝒙): It is assumed that the function 𝑓(𝑥) is continuous and 

defined on the interval [𝑎, 𝑏], meaning that for all 𝒙 ∈ [𝒂, 𝒃], the function 𝑓(𝑥) has a 

well-defined value. 

2. Continuity and boundedness of 𝑲(𝒙, 𝒕, 𝒚(𝒕)): The kernel 𝐾(𝑥, 𝑡, 𝑦(𝑡)) must be 

continuous and bounded with respect to 𝑦(𝑡). In other words, the function 𝑲(𝒙, 𝒕, 𝒚(𝒕)) 

must satisfy the Lipschitz condition: 

(23) 𝐺(𝑥, 𝑦1) − 𝐺(𝑥, 𝑦2) ∣≤ 𝐿 ∣ 𝑦1 − 𝑦2 ∣, ∀𝑦1, 𝑦2 ∈ [𝛼, 𝛽] 

where: 

a. 𝐺(𝑥, 𝑦) is a function derived from the integral kernel 𝐾(𝑥, 𝑡, 𝑦(𝑡)). 
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b. 𝛼 and 𝛽 are constants that correspond to the bounds of the function values 𝑦(𝑥). 

c. 𝐿 is the Lipschitz constant, a positive fixed number that limits the rate of change of the 

function relative to the changes in the input. 

3. Existence and Uniqueness of the Solution: If the above conditions are met, it follows 

that the nonlinear integral equation 

𝑦(𝑥) = 𝑓(𝑥) + ∫ 𝐾
𝑏

𝑎

(𝑥, 𝑡, 𝑦(𝑡))𝑑𝑡 

It is a constant and unique solution. In other words, if G (x, y (x)) is a feature that 

satisfies the Lipschitz position, it will be a unique solution to the interval [a, b] non -linear 

integrated equation. 

Therefore, -linear integrated equations are not achieved by proving the existence and 

uniqueness of the solution in the Lipschitz position. This situation ensures that small 

changes in input function y (x) lead to small changes in solutions y (x), thus guaranteeing 

that the solution is unique. 

3.2. Approximation of the Nonlinear Function 

In this section, we focus on estimating the facility of non-lengeous facilities displayed 

in non-lenient integrated equations. It is believed that the function G (x, y (x)), which 

appears in the non -linear integrated equation, is a non -linear function that should be 

estimated for use in the numerical methods, such as the TAU method. To achieve this, 

linear function G (x, y (x)) has not been estimated as a variety of variations, enabling its 

effective use in numerical methods. These multiplication chains, by using appropriate base 

functions, do not make the linear function of a solution.This adjacent process is important 

to solve non-linear integrated equations, as it does not allow linear words to be handled 

using well-installed numerical techniques. By estimating G(x, y (x)) as a series, we can 

convert the equation into a form that is more manageable to calculate. The choice of base 

functions and the degree of polynomial chain will determine the accuracy and convergence 

of accuracy.. 

(24) 𝐺(𝑥, 𝑦(𝑥)) ≈ ∑ 𝛾𝑖

𝑛

𝑖=0

(𝑥)𝑦𝑖(𝑥) 

In this context: 

a. 𝛾𝑖(𝑥) are the coefficients dependent on 𝑥. 

b. 𝑦𝑖(𝑥) are the approximate values of the function 𝑦(𝑥) that are obtained during the 

computation. 

This approximation series allows us to transform the nonlinear function 𝐺(𝑥, 𝑦(𝑥)) 

into a set of linear functions, which can then be solved using numerical methods. 

This series expansion facilitates converting the nonlinear function 𝐺(𝑥, 𝑦(𝑥)) into a 

collection of linear functions that are numerically solvable. Here, the following lemma is 

used to show that this series can be appropriately approximated: 

Lemma for Nonlinear Function Approximation 

Assume that the function 𝑣(𝑥) can be represented as an infinite polynomial series: 

(25) 𝑣(𝑥) = ∑𝑣𝑖𝜙𝑖(𝑥)

∞

𝑖=0

 

In this context: 

a. 𝑣𝑖 are the coefficients of the function 𝑣(𝑥), expressed as 𝑣𝑇 = [𝑣0, 𝑣1, 𝑣2, …  ]. 

b. 𝑣(𝑥) represents the basis functions used for approximating the target function. 

This function 𝑣(𝑥) is generally obtained in vector form as follows: 

(26) 𝑣(𝑥) = 𝑣𝑇X 
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In this equation: 

a. X = [1, 𝑥, 𝑥2, …  ] is a vector of basis functions. 

b. 𝑣𝑇  is a vector of the function coefficients. 

c. It is assumed that 𝑝 ∈ ℕ, which denotes the polynomial degree. 

Then, for each pp, the value of the function 𝑣𝑝(𝑥)  is approximated as follows: 

(27) 𝑣𝑝(𝑥) = 𝑣𝑇B𝑝−1X 

In this equation: 

a. B𝑝−1 is a Toeplitz matrix, where each row and each column is arranged in a triangular 

form. 

The matrix B𝑝−1 is given as follows: 

(28) B = (

𝑣0
𝑇 𝑣1

𝑇 𝑣2
𝑇 …

0 𝑣0
𝑇 𝑣1

𝑇 …

0 0 𝑣0
𝑇 …

. . . . . . . . . . . .

) 

Variably with every p, this matrix is an upper triangular matrix. 

 These matrices and poisson series allow the nonlinear function G(x, y(x)) to be 

finally transformed into a polyn approximation fit for numerical methods including the 

Tau approach.   This method continuously solves the nonlinear integral equation by 

updating the coefficients γ_i )x( and y_i )x(. 

3.3. Approximation Operations for Volterra-Hammerstein Integral Equations 

This section presents and examines the TAU approach for Volterra-Hamstein 

integrated equations.  The objective is to tackle the unconverted equation by numerical 

methods.  This category of linear integrated equations is extensively utilized in scientific 

and engineering applications.. 

The equation under consideration is given as follows: 

(29) 𝐺(𝑡, 𝑦(𝑡)) ≈ ∑ 𝛾𝑝(𝑡)𝑦𝑝(𝑡)

𝑛

𝑝=0

 

In this equation: 

a. 𝐺(𝑡, 𝑦(𝑡)) is the nonlinear function that needs to be approximated. 

b. 𝛾𝑝(𝑡) are the coefficients of the function, which are represented as polynomial series 

for each pp. 

c. 𝑦𝑝(𝑡) are the approximate values of the function 𝑦(𝑡) that are updated throughout the 

computations. 

Now, for applying the Tau method, the integral equation is approximated as follows: 

(30) 𝑦(𝑥) = 𝑓(𝑥) + ∑∫ 𝐾(𝑥, 𝑡)𝛾𝑝(𝑡)𝑦𝑝(𝑡) 𝑑𝑡
𝑥

0

𝑛

𝑝=0

 

In this case: 

a. 𝐾(𝑥, 𝑡) is the integral kernel that applies the function 𝑦(𝑡) in modeling the nonlinear 

integral equation. 

b. 𝑓(𝑥) is the given function that appears directly in the equation. 

c. 𝛾𝑝(𝑡) are the basis functions that are applied sequentially in the equation. 

This relation represents an equation that involves a series of integrals and various 

coefficients. Here, the equation is iteratively updated to obtain an approximate solution 

for 𝑦(𝑥). 

3.3.1 Matrix Form of the Nonlinear Integral Equation 
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To represent the above equation in matrix form, we use standard notation common 

in integral equations. The equation can be transformed into matrix form as follows: 

(31)  𝑎𝑇X = 𝑓𝑇X + 𝑴𝟎X + ∑ 𝑎𝑇B𝑝−1𝑀𝑝X

𝑛

𝑝=1

 

In this equation: 

a. 𝑎𝑇X represents the approximate solutions of the function. 

b. 𝑓𝑇X represents the given values of the function 𝑓(𝑥), which appear as constants in the 

equation. 

c. 𝑀0 and 𝑀𝑝 are matrices derived from the combination of coefficients and the integral 

kernel 𝐾(𝑥, 𝑡). 

d. B𝑝−1 are upper triangular matrices constructed to define the structure of the equation. 

Using these relations and matrices, the nonlinear integral equation can be 

transformed into a system of linear algebraic equations, which can then be easily solved. 

3.3.2. Formulation of the Algebraic System 

At this stage, the equation is transformed into a system of algebraic equations that 

can be solved numerically. The system of equations is written as follows: 

(32) 𝑎𝑇X = 𝑓𝑇X + 𝑀. B−1X + ∑ 𝑎𝑇B−1𝑀𝑝B
−1X

𝑛

𝑝=1

 

In this equation: 

a. 𝐵−1 is the inverse of the matrix 𝐵, which is continuously used in the computational 

steps. 

b. 𝑋 is a vector that contains the approximate values for the solution of the equation. 

By using these formulas and transforming the system into matrix form, the solution 

of the equation can be obtained with higher accuracy. 

3.4. Construction of the Tau Approximate System 

In this section, the construction of the Tau estimated system for Volterra-

Hammerstein integro-differential equations has been discussed. Here, the goal is to 

present mathematical methods and formulas for the construction of a system of nonlinear 

equations when using matrix operations and special structures. In order to create an 

algebraic system for numerical solutions of a non-linear integrated equation, more 

matrices, such as M, B_(P-1), and B, must be calculated first. These Matriss Voltra-

Hamstein are required for the exact solution of integrating difference equations and will 

eventually be used in the process of numerical solution.. 

3.4.1 Algebraic Form and Structure of the Nonlinear System 

To simplify the solution of the equation and its implementation, the integral equation 

is converted into an algebraic form. It is assumed that the nonlinear part of this equation 

is expressed as follows:  

(33) 𝑎𝑇X = 𝑓𝑇X + 𝑎𝑇B𝑝−1𝑀X 

Here: 

a. 𝑎𝑇𝑋 represents the approximate solution obtained. 

b. 𝑓𝑇𝑋 represents the given function values 𝑓(𝑥) that appear constantly in the equation. 

c. 𝑀 is the matrix formed by the coefficients and the integral kernel 𝐾(𝑥, 𝑡). 

d. B𝑝−1 are matrices constructed in an upper triangular form and are used for combining 

and simplifying the solution of the equation. 

 

3.4.2. Conversion to a Linear Algebraic System 
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In this step, the equation is converted into a linear algebraic system so that it can be 

solved numerically. To achieve this, equation (33) is transformed into the following form: 

(34) 𝑎𝑇X = 𝑓𝑇X + 𝑀0B
−1X + ∑ 𝑎𝑇B−1𝑀𝑝B

−1X

𝑛

𝑝=1

 

Here: 

a. B−1 is the inverse of matrix 𝐵, which is continuously used in the computations. 

b. 𝑋 is a vector containing the approximate values of the equation's solutions. 

With this change, the complex integrated equation is converted to a linear system 

with equations that can be solved directly. 

3.4.3. Structure of the Lower Triangular Matrix 

Next, to facilitate solving the equation, low triangular matrix is used. In this section, 

matrices B_ (P-1) are constructed in lower triangular form, and the kronecker product is 

used to represent matrices: 

(35) B = 𝑎𝑇 ⊗ (

e1 e2 e3 …
0 e1 e2 …
0 0 e1 …

) 

Here: 

a. 𝐞𝐢 are the standard vectors. 

b. ⊗ represents the Kronecker product, which is used to construct lower triangular 

matrices. 

3.4.4. Constructing the System of Equations for Solution 

Using the constructed matrices, the equation is transformed into an algebraic system 

of equations for solving. In this way, to solve the Volterra-Hammerstein equation, the 

system of equations will take the following form: 

(36) a𝑇B𝑝−1𝑀 = [0, 𝑔1(a0), 𝑔2(a0, a1), … , 𝑔𝑛(a0, … , an−1)]
𝑇  

Here: 

a. 𝑔𝑖(a0, … , ai−1) are functions that are sequentially updated and depend on the previous 

values of aa. 

Finally, by using the above relations and the structure of the system of equations, the 

nonlinear system can be solved numerically. This system of equations can be applied to 

complex Volterra-Hammerstein equations, allowing accurate results to be obtained for 

nonlinear integral equations. 

3.5. Numerical Examples 

In this section, the Tau method is applied to solve Volterra-Hammerstein integral 

equations and nonlinear equations using various basis functions such as Chebyshev, 

Legendre, and Taylor expansions, for numerical examples. Calculations were carried out 

using Maple software on computers with specific configurations. For all examples, the 

maximum error between the approximate and exact solutions was computed. 

Example1:Volterra-Hammerstein Integral Equation 

For this example, the Volterra-Hammerstein integral equation is considered in the 

following form: 

(37) 𝑦(𝑥) = 𝑓(𝑥) + ∫ 𝐾(𝑥, 𝑡)𝑦2(𝑡) 𝑑𝑡, 𝑥 ∈ [0,1]
𝑥

0

 

In this case, the function 𝑓(𝑥) and the kernel 𝐾(𝑥, 𝑡) are defined as follows: 

(38) 𝑓(𝑥) = −
1

4
𝑥5 −

2

3
𝑥4 −

5

6
𝑥3 − 𝑥2 + 1 

(39) 𝐾(𝑥, 𝑡) = 𝑥𝑡 + 1 
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The exact solution to this equation is 𝑦(𝑥) = 𝑥 + 1. 

For the numerical implementation of this equation, the following simple matrices are 

considered for the Chebyshev basis functions. In this example, 𝑛 =  5 and 𝑝 =  2 basis 

functions are used: 

(40) 
Γ =

[
 
 
 
 
 

1 0 0 0 0 0
0 1 0 0 0 0

−1 0 2 0 0 0
0 −3 0 4 0 0
1 0 −8 0 8 0
0 5 0 −20 0 16]

 
 
 
 
 

 

 

Matrix 𝑀 is defined as: 

(41) 𝑀 =

[
 
 
 
 
 
 
 
 
 
 0 1 0

1

2
0 0

0 0
1

2
0 1 0

0 0 0
1

3
0 0

0 0 0 0
1

3
0

0 0 0 0 0
1

4]
 
 
 
 
 
 
 
 
 
 

 

Matrix 𝐵 is defined as: 

(42) 𝐵 =

[
 
 
 
 
 
�̃�0 �̃�1 �̃�2 �̃�3 �̃�4 �̃�5

0 �̃�0 �̃�1 �̃�2 �̃�3 �̃�4

0 0 �̃�0 �̃�1 �̃�2 �̃�3

0 0 0 �̃�0 �̃�1 �̃�2

0 0 0 0 �̃�0 �̃�1

0 0 0 0 0 �̃�0]
 
 
 
 
 

 

The vector 𝑓is defined as: 

(43) 𝑓 =

[
 
 
 
 
 

1
0

−1
−5
6

−2]
 
 
 
 
 

 

Using the Tau method and solving the nonlinear system of equations step by step, 

specifically for this example, we obtain: 

(44) �̃�0 = 1, �̃�1 = �̃�2 = 0, �̃�3 = �̃�4 = �̃�5 = 0 

And the exact solution of the equation is obtained as: 

(45) 𝑦𝑛(𝑥) = 𝑎𝑇𝑋 = 1 + 𝑥 

Where 𝑎𝑇 = [1,1,0,0,0,0]. 

Finally, the Tau method was effectively used to solve nonlinear Volterra integral 

equations, and an accurate solution similar to the analytical solution of the equation was 

obtained. Based on the numerical computations, the degree of the approximate solution 

was sufficiently accurate and demonstrated that for complex equations, the Tau method 

can produce precise results. 

 

 

 

 

 

Example 2: Nonlinear Integral Equation 
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In this example, the nonlinear Volterra-Fredholm integral equation is given as 

follows: 

(46) 𝑦(𝑥) = 1 + 𝑠𝑖𝑛2(𝑥) − ∫ 3𝑠𝑖 𝑛(𝑥 − 𝑡) 𝑦2(𝑡) 𝑑𝑡, 𝑥 ∈ [0,1]
𝑥

0

 

Where the exact solution of the equation is considered as 𝑦(𝑥) = 𝑐𝑜𝑠 (𝑥). To solve 

this equation using the Tau method, the standard basis with 𝑛 =  4 has been used. 

Initially, the required matrices were obtained as follows: 

(47) 𝑀 = [

0 0 −3 2
0 1 8 0
0 0 0 −1
2 0 0 0

] 

And the vector 𝑓 is defined as follows: 

(48) f =

[
 
 
 
 
 

1
0
1
0

−1
3 ]

 
 
 
 
 

 

The results for the nonlinear equations are obtained as follows: 

(49) a = [1,0, −
1

2
, 0,

1

24
] 

Therefore, the approximate solution will be as follows: 

(50) 𝑦𝑛(𝑥) = 1 −
1

2
𝑥2 +

1

24
𝑥4 

These results demonstrate that the Tau method is capable of achieving high accuracy 

in solving nonlinear integral equations, which is clearly improved when compared to the 

results from previous methods. Table 1 shows the maximum errors for different basis 

functions: 

Table 1. Maximum Errors for Different Basis Functions. 

N Standard Base Chebyshev Base Legendre Base 

4 6.60E-3 4.46E-3 2.52E-3 

8 9.45E-7 6.66E-7 3.97E-7 

12 8.41E-11 2.07E-11 1.28E-11 

16 8.91E-16 6.50E-16 7.10E-16 

 

Numerical Results 

These numerical results indicate that the TAU method produces accurate results 

when using individual bases and reduces calculation errors, which confirms the 

effectiveness of the proposed numeric methods to solve non-led Vaultra-Firedhom 

integrated equations. 

3. Conclusion 

The presence and particular characteristics of the solution of two-dimensional 

Vaultra-Fredholm integrated equations are investigated in this work together with 

numerical techniques to solve and solve them with an eccentric core.  Complex physical 

and engineering issues include heat transport, fluid mobility and biological models benefit 

especially from Volterra-Fredhomm-Integrated equations.  Solving these equations might 

be difficult using conventional approaches because of eccentric core and their complicated 

form.  Consequently, it is essential to investigate the existence and uniqueness of solutions 

in great depth and create numerical approaches to solve these equations.  This work aimed 

primarily to investigate the existence and specificity of two-dimensional Voltra-Fredhom 
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integrated equations with monotonal core in order to solve them with the rope technique.  

In this framework, the characteristics and specificity of the existence of Voltera -Peace's 

solutions were first examined, then, using the numerical approaches, the rope technique, 

they were combined into a system turned into a system of algebra.  These systems were 

then applied loosely in integrated equations to manage colonial core under appropriate 

matriasis . 

 Especially in the presence of eccentric centers, numerical results showed that the 

Tau technique effectively solved the challenging Volterra-Fredholm integrated equations 

with high accuracy.  Furthermore, the findings revealed that the accuracy of the solutions 

much improved as we included additional conditions in the series and raised the 

complexity of the base functions.  It emphasizes the great potential of the rope approach 

in solving complicated equations with single centers.  Furthermore, the suggested 

numerical techniques can solve integrated equations with various boundary conditions 

rather well. 

Suggestions for Future Research: 

a. Development of numerical methods for equations with more complex kernels. 

b. Improvement of algorithm efficiency and acceleration of convergence. 

c. Examination of specific challenges in nonlinear problems with singular kernels. 

d. Testing the proposed methods on real-world physical and engineering problems. 
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