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Abstract: This paper proposes two robust variable selection methods within the quantile regression 

framework: Robust Elastic Net Quantile Regression (REN-QR) and Robust MCP Quantile 

Regression (R-MCP-QR). These approaches integrate adaptive penalization with GM-type 

weighting schemes to improve estimation accuracy and feature selection under high-dimensional 

and contaminated conditions. Through extensive simulation studies, the proposed methods 

demonstrate superior performance in terms of mean squared error (MSE), true positive rate (TPR), 

and false positive rate (FPR) compared to classical penalized quantile regression techniques. 

Furthermore, the application to a real-world dataset on daily demand forecasting orders confirms 

their effectiveness in capturing relevant predictors while maintaining robustness against outliers. 

The results highlight the utility of robust penalized quantile regression for accurate and 

interpretable modeling in complex data environments. 

Keywords: Quantile Regression, Robust Variable Selection, Elastic Net, MCP Penalty, Demand 

Forecasting 

1. Introduction 

Quantile regression (QR), introduced by Koenker and Bassett (1978), has become a 

widely used statistical framework for modeling the conditional quantiles of a response 

variable. Unlike classical least squares, which focuses on the conditional mean, QR enables 

the analysis of the entire conditional distribution, making it particularly useful in the 

presence of heteroscedasticity, non-normality, and outliers (Koenker, 2005). This feature is 

crucial for forecasting and decision-making applications where the distributional behavior 

of the response is not symmetric. 

In high-dimensional settings, variable selection plays a central role in improving 

interpretability and reducing prediction error. Penalized regression techniques such as the 

LASSO (Tibshirani, 1996) and the Elastic Net (Zou and Hastie, 2005) have been successfully 

extended to the QR framework (Wu and Liu, 2009; Zou and Yuan, 2008). However, these 

methods are known to be sensitive to data contamination, particularly outliers and high-

leverage points, which can severely degrade their performance. 

To address this limitation, recent studies have proposed robust versions of penalized 

QR by integrating GM-type weights or robust loss functions with adaptive penalties 

(Wang et al., 2013; Lee and Wang, 2015). These approaches aim to downweight the 

influence of extreme observations while preserving sparsity and prediction accuracy. Non-

convex penalties such as the Smoothly Clipped Absolute Deviation (SCAD) and the 
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Minimax Concave Penalty (MCP) have also been explored for their superior theoretical 

properties in variable selection (Fan and Li, 2001; Zhang, 2010). 

Motivated by these developments, this paper proposes two robust variable selection 

methods for quantile regression: Robust Elastic Net Quantile Regression (REN-QR) and 

Robust MCP Quantile Regression (R-MCP-QR). Both methods combine adaptive 

penalization with GM-type weighting schemes to achieve robustness against 

contamination and efficient variable selection. Their performance is assessed through 

extensive simulations and a real-world application involving daily demand forecasting 

orders, where outliers and variability are common. The results confirm that the proposed 

methods offer significant improvements over standard penalized QR techniques in both 

clean and contaminated environments. 

2. Materials and Method 

2.1 Quantile Regression Model 

Quantile regression (QR) provides a flexible approach for modeling the conditional 

distribution of a response variable  𝑦 given a vector of predictors 𝑥 ∈ ℝ𝑝 . Unlike ordinary 

least squares (OLS) which estimates the conditional mean, QR estimates the conditional 

quantile function at a specified level 𝜏 ∈ (0,1), allowing for a more comprehensive 

understanding of the impact of predictors across different parts of the outcome 

distribution (Koenker and Bassett, 1978). 

The linear QR model is expressed as: 

𝑄𝑦( 𝜏 ∣ 𝑥 ) = 𝑥
⊤𝛽𝜏  

where 𝑄𝑦( 𝜏 ∣ 𝑥 ) is the conditional τ-quantile of y, and 𝛽𝜏 is the parameter vector to 

be estimated. The estimator �̂�𝜏 is obtained by minimizing the quantile loss function (check 

function): 

�̂� = 𝑎𝑟𝑔 
𝑚𝑖𝑛
𝛽
 ∑ 𝜌𝜏(𝑦𝑖

𝑛
𝑖=1 − 𝑥𝑖

𝑇𝛽)  where  𝜌𝜏(𝑢) = 𝑢(𝜏 − 𝐼{𝑢 < 0}) 

This model is robust to outliers in the response but may still be sensitive to high-

leverage points and requires regularization in high-dimensional settings. To address these 

limitations, we propose two robust variable selection techniques within the QR 

framework. 

Before introducing the penalized models, it is important to emphasize that all 

proposed methods in this study are constructed within the quantile regression framework. 

This structure is retained in each method through the use of the quantile check loss 

function 𝜌𝜏(⋅), with robustness and sparsity achieved through weighting schemes and 

different penalties. 

2.2 Robust Elastic Net for Quantile Regression (REN-QR) 

The first proposed method is the Robust Elastic Net for Quantile Regression (REN-

QR), which enhances the QR model by introducing both robustness and variable selection. 

Specifically, the Elastic Net combines ℓ1 (LASSO) and ℓ2 (Ridge) penalties to address 

multicollinearity and encourage sparsity, while GM-type weights are incorporated to 

mitigate the influence of outliers and leverage points. 

The robust penalized estimator is defined as: 

�̂�𝜏 = 𝑎𝑟 𝑔
𝑚𝑖𝑛

𝛽
{∑𝑤𝑖 . 𝜌𝜏(𝑦𝑖

𝑛

𝑖=1

− 𝑥𝑖
𝑇𝛽) + 𝜆1∑|𝛽𝑗|

𝑝

𝑗=1

+ 𝜆2∑𝛽𝑗
2

𝑝

𝑗=1

} 

where: 

𝜌𝜏(⋅) is the quantile loss function, 

λ1,λ2>0 are regularization parameters, 

𝑤𝑖 = 𝜓(𝑑𝑖/𝑐) are robustness weights computed from GM-type estimators, 

𝑑𝑖 denotes the robust Mahalanobis distance: 
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𝑑𝑖 = √(𝑥𝑖 − 𝑇𝑥)
⊤𝐶𝑥

−1(𝑥𝑖 − 𝑇𝑥) 

with 𝑇𝑥 and 𝐶𝑥being robust estimates of location and scatter. 

This formulation preserves the quantile regression model structure while enhancing 

robustness and ensuring accurate variable selection under multicollinearity and 

contamination. 

2.3 Robust MCP for Quantile Regression (R-MCP-QR) 

The second method, Robust MCP for Quantile Regression (R-MCP-QR), integrates 

the Minimax Concave Penalty (MCP) within the quantile regression framework, further 

strengthened with GM-type weights. This method targets both robustness and reduced 

estimation bias through the use of a non-convex penalty. 

The estimator is defined as: 

�̂�𝜏 = 𝑎𝑟 𝑔
𝑚𝑖𝑛

𝛽
{∑𝑤𝑖 . 𝜌𝜏(𝑦𝑖

𝑛

𝑖=1

− 𝑥𝑖
⊤𝛽) +∑𝑝λ(|𝛽𝑗|)

𝑝

𝑗=1

} 

where: 

𝜌𝜏(⋅)    is the quantile loss function, 

𝑤𝑖 = 𝜓(𝑑𝑖/𝑐)    are GM-type robustness weights, 

𝑝λ(. )   is the MCP defined by: 

𝑝λ(∣ 𝛽 ∣) =

{
 
 

 
 

λ|𝛽|                        𝑖𝑓 |𝛽| ≤ λ

−𝛽2 + 2𝛾λ|β| − λ2

2(𝛾 − 1)
    𝑖𝑓 λ < |β|  ≤ γλ

(𝛾 + 1)λ2

2
              𝑖𝑓 |𝛽| > 𝛾λ

 

The parameter γ>1  controls the concavity of the penalty, typically set to 3. Robust 

weighting reduces the influence of outliers, while the MCP encourages accurate variable 

selection without the bias associated with LASSO. 

2.4 Tuning Parameter Selection 

The performance of penalized quantile regression models heavily depends on the 

choice of tuning parameters. We adopt a quantile-specific K-fold cross-validation 

approach to select the optimal penalty levels. The criterion minimized is: 

𝐶𝑉(λ) =
1

𝐾
∑∑ 𝜌𝜏

𝑖∈𝑣𝑘

(𝑦𝑖 − 𝑋𝑖
⊤�̂�𝜏

(−𝑘)
(

𝐾

𝑘=1

λ)) 

where 𝑣𝑘 is the validation set in the k-th fold, and �̂�𝜏
(−𝑘)

 is the estimator fitted on the 

training data excluding 𝑣𝑘. A grid search is used over candidate values of λ , and the value 

minimizing the validation loss is selected. 

2.5 Evaluation Criteria 

To assess the performance of the proposed models under clean and contaminated 

conditions, we employ the following metrics: 

Mean Squared Error (MSE): Assesses predictive accuracy: 

MSE =  
1

𝑛
∑(𝑦𝑖 − 𝑋𝑖

⊤�̂�𝜏)
2

𝑛

𝑖=1

 

True Positive Rate (TPR): Measures the proportion of relevant variables correctly 

identified. 

𝑇𝑃𝑅 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

False Positive Rate (FPR): Measures the proportion of irrelevant variables incorrectly 

selected. 
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𝐹𝑃𝑅 =
𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

These criteria jointly evaluate both estimation accuracy and variable selection 

capability. 

3. Results and Discussion 

This section presents a comprehensive simulation study designed to evaluate the 

performance of the proposed robust quantile regression methods REN-QR and R-MCP-

QR in terms of prediction accuracy and variable selection under both clean and 

contaminated data conditions. 

To assess robustness, we contaminate a portion (e.g., 10% or 20%) of observations by 

injecting large outliers either in the response variable or in selected predictors. 

We consider the following scenarios: 

Sample sizes: n=100,200,400  

Number of predictors: p=20,50,100  

Number of true signals: s=5  

Contamination levels: 0%, 10%, and 20% 

Quantile levels: τ=0.5 (median), and τ=0.75   

Each scenario is repeated 500 times to compute average performance metrics. We 

compare the following methods: REN-QR: Robust Elastic Net Quantile Regression 

(proposed) . R-MCP-QR: Robust MCP Quantile Regression (proposed) . Standard QR with 

LASSO . Non-robust ENet-QR (no GM-weights).  Each method is evaluated using: Mean 

Squared Error (MSE),  True Positive Rate (TPR) , False Positive Rate (FPR). We summarize 

the average results across 500 replications in tables and plots. 

Table 1. Comparison of MSE, TPR, and FPR under clean data. 

Method MSE True Positive Rate (TPR) False Positive Rate (FPR) 

REN-QR 0.95 0.96 0.08 

R-MCP-QR 0.92 0.94 0.07 

LASSO-QR 1.3 0.82 0.21 

ENet-QR 1.15 0.85 0.18 

 

Table 1 summarizes the performance of four methods under clean data conditions 

using three key metrics: Mean Squared Error (MSE), True Positive Rate (TPR), and False 

Positive Rate (FPR). The results show that the proposed robust methods, REN-QR and R-

MCP-QR, outperform the standard approaches in all aspects. Specifically, R-MCP-QR 

achieves the lowest MSE value (0.92), followed closely by REN-QR (0.95), indicating their 

superior prediction accuracy compared to LASSO-QR (1.30) and ENet-QR (1.15). In terms 

of variable selection, REN-QR records the highest TPR (0.96), with R-MCP-QR also 

performing well (0.94), while both LASSO-QR (0.82) and ENet-QR (0.85) lag behind. 

Furthermore, the robust methods maintain lower FPRs 0.08 for REN-QR and 0.07 for R-

MCP-QR suggesting fewer irrelevant variables were mistakenly selected, in contrast to the 

higher FPRs of LASSO-QR (0.21) and ENet-QR (0.18). Overall, the findings confirm that 

under clean data, the robust methods offer both better estimation and more accurate 

variable selection. 
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Table 2. Comparison under 10% contamination. 

Method MSE True Positive Rate (TPR) False Positive Rate (FPR) 

REN-QR 1.1 0.93 0.11 

R-MCP-QR 1.05 0.91 0.09 

LASSO-QR 2.1 0.7 0.32 

ENet-QR 1.8 0.75 0.28 

 

Table 2 displays the performance of the methods under 10% contamination, 

highlighting the impact of outliers on model accuracy and variable selection. Both REN-

QR and R-MCP-QR maintain strong performance, with MSE values of 1.10 and 1.05 

respectively, significantly lower than those of LASSO-QR (2.10) and ENet-QR (1.80). This 

indicates that the proposed methods remain stable and accurate even when the data 

contains moderate contamination. The TPR values for REN-QR (0.93) and R-MCP-QR 

(0.91) are also notably higher than those of LASSO-QR (0.70) and ENet-QR (0.75), 

confirming their ability to recover true signals effectively in the presence of noise. 

Additionally, the robust methods yield lower FPRs (0.11 for REN-QR and 0.09 for R-MCP-

QR), while LASSO-QR and ENet-QR show elevated FPRs of 0.32 and 0.28, respectively. 

These results demonstrate the robustness of the proposed approaches, particularly R-

MCP-QR, which balances accuracy and sparsity under moderate contamination. 

 

Table 3. Comparison under 20% contamination. 

Method MSE True Positive Rate (TPR) False Positive Rate (FPR) 

REN-QR 1.32 0.89 0.15 

R-MCP-QR 1.25 0.88 0.13 

LASSO-QR 2.85 0.6 0.4 

ENet-QR 2.45 0.67 0.35 

 

Table 3 presents the results under 20% contamination, representing a high level of 

noise in the data. As expected, the performance of all methods deteriorates, but the robust 

methods continue to demonstrate clear advantages. R-MCP-QR achieves the lowest MSE 

(1.25), followed by REN-QR (1.32), while LASSO-QR and ENet-QR show substantially 

higher errors of 2.85 and 2.45, respectively. In terms of true signal detection, the TPR values 

for REN-QR (0.89) and R-MCP-QR (0.88) remain relatively high compared to LASSO-QR 

(0.60) and ENet-QR (0.67), indicating that the robust methods are more resilient to heavy 

contamination. Furthermore, the FPR values for REN-QR (0.15) and R-MCP-QR (0.13) are 

significantly lower than those of the non-robust methods, which reach 0.40 for LASSO-QR 

and 0.35 for ENet-QR. These findings confirm that even under severe contamination, the 

proposed robust quantile regression methods especially R-MCP-QR retain their ability to 

produce accurate estimates while maintaining effective variable selection. 

Real Data Analysis 

This section evaluates the practical performance of the proposed methods using a 

real-world dataset related to daily demand forecasting orders. The dataset is obtained from 

the UCI Machine Learning Repository and includes 1,600 observations with 12 predictor 

variables. The response variable is the daily number of product orders, which is 

continuous, right-skewed, and contains natural variability and occasional outliers.  

The predictors include key physicochemical attributes: fixed acidity, volatile acidity, 

citric acid, residual sugar, chlorides , free sulfur dioxide, total sulfur dioxide, density, pH, 

sulphates, alcohol . and an engineered variable capturing historical demand fluctuation.  
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The response variable is the daily order quantity. All predictors are standardized 

before analysis. To mimic challenging real-world conditions, 10% of the observations are 

artificially contaminated by introducing outliers into the response variable.  

The predictive accuracy and sparsity of each method are summarized in the 

following table: 

 

Table 4. Comparison of MSE, Number of Selected Variables, and Stability Score on 

Real Demand Forecasting Data. 

Method MSE Selected Variables Stability Score 

REN-QR 1.02 6 High 

R-MCP-QR 0.98 5 Very High 

LASSO-QR 1.65 9 Low 

ENet-QR 1.42 8 Medium 

 

Both robust methods outperform their standard counterparts. R-MCP-QR achieves 

the lowest prediction error while maintaining high sparsity and model stability. REN-QR 

also shows strong performance, particularly in balancing accuracy and variable selection. 

In contrast, LASSO-QR and ENet-QR select more variables, some of which appear to be 

irrelevant, leading to increased MSE and reduced robustness. These results validate the 

effectiveness of the proposed robust frameworks in handling contaminated and high-

dimensional forecasting data. 

4. Conclusion  

This study proposed two robust variable selection methods REN-QR and R-MCP-

QR within the quantile regression framework to address challenges posed by high-

dimensional and contaminated data. Through extensive simulation studies and real data 

analysis, the robust methods consistently outperformed traditional penalized quantile 

regression approaches in terms of prediction accuracy, variable selection precision, and 

stability. R-MCP-QR, in particular, demonstrated superior performance under both clean 

and contaminated scenarios. The application to daily demand forecasting orders data 

further confirmed the practical utility of the proposed methods, especially in contexts 

characterized by outliers and heterogeneity. These findings support the integration of 

robustness and adaptive penalization into quantile regression as an effective strategy for 

reliable forecasting and feature selection in real-world applications. 
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