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Abstract: The main goal of regression analysis is to estimate the effect relationship between 

independent variables and the dependent variable. Consequently, the type of response variable data 

determines the type of regression model to be used. If the dependent variable data is continuous 

and represents proportions confined between (0, 1), the Beta regression model is considered a good 

choice for representing such a relationship. However, at times, the Beta regression model encounters 

issues that make the estimated relationship unstable. This instability is due to the presence of some 

econometric problems that cause the estimators to be inaccurate. One such issue is multicollinearity. 

This problem arises when there is a strong correlation between the explanatory variables, which 

particularly affects the estimators of the parameters (β) by reducing their accuracy. Multicollinearity 

leads to an unusual inflation of parameter variances, making the estimators less reliable. In this 

paper, we will present a new method that integrates the Beta regression model with Principal 

Component Regression to develop a hybrid regression model. This hybrid model will be more 

suitable for estimation in the presence of multicollinearity issues. Simulation examples and real data 

are used to evaluate the performance of the proposed method in comparison with existing methods. 

Keywords: Beta Regression, Principal Component Regression, Multicollinearity, Beta Principal 

Component Regression 

1. Introduction 

The beta regression model (BReg) is an active tool for evaluating the relationship 

between continuous response variables that are bound within a limited range, typically 

between 0 and 1, and a set of independent variables. Since the seminal work of Ferrari, S. 

L. P., & Cribari-Neto, F. B Reg has become very popular  in various  application sciences, 

for example : Medical sciences, nature science. medical science, econometric science. The 

Beta regression model is considered one of the generalized linear regression models [1], 

[2]. This model is particularly suitable for cases where the response variable follows a Beta 

distribution, and the data for this variable are continuous and defined within the open 

interval (0,1). When classical regression is applied to such data, which follow a Beta 

distribution, the model loses its ability to predict and generalize effectively. Moreover, 

when relative data are transformed into discrete values, the predicted and expected values 

may fall outside the closed interval. Beta regression is adaptable due to the Beta 

distribution's ability to assume a multitude of forms, which enables it to accommodate a 

diverse array of data patterns. Nevertheless, it experiences difficulties when the number 

of predictors exceeds the number of observations, or when the predictors (independent 

variables) are highly correlated (multicollinearity) [3]. To overcome these real challenges, 

the researchers proposed an extension of principal component regression (PCReg) 

regression specifically with Beta regression model. This extension allows us  for a good 

treatment of multicollinearity problem.in this paper,we will proposed a new statistical 
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technique that combines principal component regression (PCreg) with beta linear 

regression to address the problem  of multicollinearity between predictor variables.This 

method transforms the original correlated variables into a set of uncorrelated components, 

which can then be used as predictors in regression models, enhancing prediction accuracy 

and interpretability [4]. The following sections of this paper are structured as follows.in 

section 2 the multicollinearity problem that affect the accuracy of independent variales 

model. In section 3 Simple introduction of beta regression. In section 4 proposed beta 

principal component regression model. We illustrate the effectiveness of our proposed 

method through both simulation analyses and empirical data. with brief conclusion 

shown in section 6 [5]. 

The Multicollinearity Problem 

Multicollinearity problem in multiple beta regression appear from high correlations 

between explanatory variables, complicating the evaluation of individual variable effects. 

This problem negatively affect model stability, accuracy and difficult of the interpretation 

for real relationships between explanatory variables and response variable. The  

multicollinearity problem with the beta regression model to makes the beta regression 

model unreliable [6]. Where, Coefficients maybe not reflect the real relationship between 

explanatory variables and the response variable. The size or direction of an effect. The 

multicollinearity may be wrong, also the multicollinearity problem raises the variance of 

coefficient estimates and makes it difficult to determine whether a explanatory variables 

are statistically significant. Multicollinearity in beta regression models has a significant 

impact on the variance of maximum likelihood (ML) estimation [7], [8], [9], [10]. Because 

of, presence of a multicollinearity problem can provide us over fitting, in which the beta 

regression model captures a lot of noise in the data instead of the main relationship. 

Multicollinearity presents substantial issues in beta regression modeling, compromising 

the stability and interpretability of results. 

2. Materials and Methods 

Beta regression model  

beta distribution  

The beta distribution is a probability distribution used to model random variables 

with values ranging from 0 to 1. This makes it particularly handy when modeling 

proportions or rates. The beta distribution is characterized by two parameters: a and 

b. The notation 𝑎 > 0 and 𝑏 > 0 indicate that these parameters must be greater than zero. 

The values of 𝑎 and 𝑏 influence the distribution's mean, variance, and overall look. Below, 

the probability density function (PDF) of the Beta distribution can be presented as follows: 

𝑓(𝑦, 𝑎, 𝑏) =
Γ(𝑎 + 𝑏)

Γ𝑎 Γ𝑏
    𝑦𝑎−1(1 − 𝑦)𝑏−1            0 < 𝑦 < 1            (1) 

Γ(𝑥)𝑖𝑠 𝑛𝑎𝑚𝑒𝑑 𝐺𝑎𝑚𝑚𝑎 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛, B(a, b)𝑖𝑠 𝑛𝑎𝑚𝑒𝑑 𝑏𝑒𝑡𝑎 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛, according this 

information the equation (1) rewrite as following: 

𝑓(𝑦, 𝑎, 𝑏) =
1

B(a, b)
    𝑦𝑎−1(1 − 𝑦)𝑏−1     0 < 𝑦 < 1                                       (2)      

where B(a, b) =
Γ𝑎 Γ𝑏

Γ(𝑎+𝑏)
, therefore 

1

B(a,b)
=

Γ(𝑎+𝑏)

Γ𝑎 Γ𝑏
, 𝑦 𝑏𝑒𝑙𝑜𝑛𝑔 𝑡𝑜 𝑜𝑝𝑒𝑛 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 (0,1). 𝑎 > 0 

and 𝑏 > 0 , 

Γ(𝑦) = (𝑦 − 1)!. According to Equation 1, the Beta distribution is one of the 

continuous distributions that has a mean (
𝑎

𝑎+𝑏
) and variance (

𝑎𝑏

(𝑎+𝑏)2(𝑎+𝑏+1)
)( Damgaard, C. 

F., & Irvine, K. M. (2019)). We shall reparametrize because in regression models, 

parameterization can assist make the model more interpretable and computationally 

efficient. It enables for parameter transformations, which can improve convergence 

properties during estimate. The reparametrization can be by adding precision 

parameter(∅ > 0). Therefore , ∅ = 𝑎 + 𝑏, 𝑡ℎ𝑒𝑛 𝑡ℎ𝑒 𝜇 =
𝑎

𝑎+𝑏 ,
⇒ 𝜇 =

𝑎

∅
 

,
⇒ 𝑎 = ∅𝜇, we can  find 

𝑏 via precision parameter ∅ as following: 

  𝑎 = (𝑎 + 𝑏)𝜇 = 𝑎 − 𝑎𝜇 = 𝑏𝜇
,

⇒ 𝑏 =
𝑎(1−𝜇)

𝜇
𝑏 =

∅𝜇(1−𝜇)

𝜇 ,
⇒ 𝑏 = (1 − 𝜇)∅,according the 

value ∅,the mean is equal  𝜇 =
𝑎

∅
, 𝜎2 =

𝜇(1−𝜇)

1+∅
. Therefore, the probability density function 

(PDF)  of beta distribution is became as following: 
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𝑓(𝑦, 𝑎, 𝑏) =
Γ(∅)

Γ∅𝜇 Γ(1 − 𝜇)∅
    𝑦∅𝜇−1(1 − 𝑦)(1−𝜇)∅−1            0 < 𝑦 < 1            (3) 

(∅, 𝜇 > 0, )( Cribari-Neto, F., & Zeileis, A. (2010).). 

Beta regression model 

Beta regression is a statistical approach used to describe response variables that are 

continuous and limited between 0 and 1. It is especially suitable for proportions and rates. 

The model is based on the assumption that the response variable follows a beta 

distribution, which allows for greater flexibility in modeling data of diverse shapes and 

variances. The beta regression model often includes establishing a link function to relate 

the mean of the response variable to the predictor variables.  

Let the observed response variable is 𝑦𝑖 ∈ (0,1), 𝑖 = 1,2,3, … . , 𝑛 where the response 

variable (𝑦𝑖) is follow a beta distribution: 𝑦𝑖~𝐵𝑒𝑡𝑎(𝜇𝑖∅, (1 − 𝜇𝑖)∅. The link function 𝑔(.)is 

to related the response variable (𝑦𝑖) and information matrix X 
𝑔(𝜇𝑖) = 𝑥𝑖

𝑇𝛽                      (4)  

where 𝑔(.) is  link function between expected value of the dependent variable 𝜇𝑖 =

𝐸(𝑦𝑖) and linear independent variables 𝑥𝑖
𝑇𝛽 . 𝑥𝑖

𝑇 is the vector of independent 

variables(Firinguetti, L., et al(2024)), where  𝑥𝑖
𝑇 = (1, 𝑥𝑖1, 𝑥𝑖2 , … . . 𝑥𝑖𝑘) and 𝛽 is vector of 

known regression parameters. We will used logit function (log
𝜇𝑖

1−𝜇𝑖
) as link function by 

some special derivative 𝜇𝑖 =
exp (𝑥𝑖

𝑇𝛽)

1−exp (𝑥𝑖
𝑇𝛽)

. Finally, link function (logit function) is a key 

component of beta regression models. It aids in converting proportions into a format that 

can be studied using traditional statistical methods, making it an invaluable tool for 

authors dealing with rates and proportions. By using an appropriate link function, a Beta 

regression model can be constructed to estimate the parameters (𝛽) as well as the precision 

parameter(∅). 

Beta principal component regression model 

Often, we encounter a set of challenges when estimating the parameters of a 

regression model. One of these challenges is the problem of multicollinearity. To obtain 

efficient estimators, it is necessary to use methods that are more robust to this problem. 

One of the proposed methods is the Principal Component Analysis (PCA) method. To get 

the beta principal component regression model is a statistical technique that combines 

principal component analysis with beta regression modeling, allowing for the reduction 

of multicollinearity among independent variables while improving prediction accuracy 

and interpretability. This method is particularly useful in situations where the number of 

predictors exceeds the number of observations, as it helps to extract the most important 

features from a dataset and mitigate potential overfitting issues. By transforming the 

original predictors into a smaller set of uncorrelated variables, As in the following 

formula: 
𝐷 = 𝑋Λ                         (5) 

where D is  the principal components matrix of order (𝑛 × 𝑞) and Λ is an orthogonal 

matrix of standardized eigenvectors corresponding to the eigenvalues of the information 

matrix (𝑋𝑡𝑋) , with order (𝑞 ∗ 𝑞) and elements ( θij   ) 𝑖 = 1, … … . . 𝑛, and its columns (Λ𝑗 

)j=1,2,…..q  , This matrix Λ diagonalizes the information matrix(Greenacre, M., et al 

(2022)), assuming that the eigenvalues of the information matrix (𝑋𝑡𝑋), 

𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑞 . To construct a regression model, as shown in Equation (5), based on the 

principal component D, we express the dependent variable 𝑦𝑖  as a function of the 

orthogonal principal components rather than the  intercorrelated independent variables 

𝑋, Since the matrix Λ is orthogonal, we have the property ΛΛt = 𝐼,where 𝐼  is the identity 

matrix . Thus, the equation (5) can be rearranged to find  the original variables in terms of 

the principal component matrix as follows:  
𝑋 = 𝐷Λ𝑇                                                      (6) 

Therefore, the link function  𝑔(𝜇𝑖) = 𝑋𝛽 is became 𝑔(𝜇𝑖) = 𝐷Λ𝑇𝛽 .Let Λ𝑇𝛽 = 𝜃 ,from this 

information the link function is 𝑔(𝜇𝑖
∗) = 𝐷θ, thus the 𝑌 = 𝐷θ + 𝑈. To estimation  of the 

parameters θ and ∅ via The maximum likelihood method is 𝑙(θ, ∅) =
∑ 𝑙𝑖

𝑛
𝑖=1 (𝜇𝑖

∗, ∅)                                                          (7) 
𝑙𝑖(𝜇𝑖

∗, ∅) = 𝑙𝑛 Γ(∅) − ln(Γ∅𝜇𝑖
∗) −  Γ(1 − 𝜇𝑖

∗)∅ + (𝜇𝑖
∗∅ − 1) ln 𝑦𝑖+[(1 − 𝜇𝑖

∗)∅] ln(1 −
𝑦𝑖)                                                                             (8) 
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To estimate the parameters of the model, the equation above can be solved using 

Fisher scoring technique is one method of a numerical solution. Through a series of 

derivations using numerical methods, the parameters of a model can be estimated using 

the following equation. 

θ̂𝑀𝐿 = [(𝐷Λ𝑇)𝑇𝑊𝐷Λ𝑇]−1(𝐷Λ𝑇)𝑇𝑊𝑧                                                    (9) 
where θ̂𝑀𝐿 is estimated to parameters of principal component, 𝐷 is principal 

components matrix, 𝑊 is weighted matrix. To obtain the original estimates for the 

regression coefficients of the beta principal component regression model �̂�. it can be 

achieved through feedback as follows: 

Λ𝑇�̂� = �̂�
,

⇒ �̂� = Λ�̂�                                                   (10) 

The beta principal component regression enhances model performance and provides 

clearer insights into the relationships between variables. This technique not only 

streamlines the modeling process but also enables researchers to identify underlying 

patterns and relationships that may have been obscured by noise in the data.Based on the 

information provided above, we will design a reliable and efficient algorithm to estimate 

the parameters of the model under investigation. Our algorithm is executed for 10,000 

iterations, with the initial 1,000 discarded as burn-in. 

3. Result  

Simulation approach 

In the subsequent section, the efficacy of the proposed method is evaluated via 

comprehensive simulation studies. We conduct a comparative analysis of our beta 

principal component regression approach (BPCReg) against the Beta regression  model  as 

delineated in Ferrari, S. L. P., & Cribari-Neto, F. referred to as ‘BReg. The two methods are 

evaluated based on the mean absolute error(MAE) that compute as follows 𝑀𝐴𝐸 =
1

𝑟
∑ |𝑦𝑖 − �̂�𝑖|𝑛

𝑖=1 . The median of mean absolute deviations (MMAD) are also used, where 

MMAD that compute as follows: 𝑀𝑀𝐴𝐷 = 𝑚𝑒𝑑𝑖𝑎𝑛 (𝑚𝑒𝑎𝑛|𝑥𝑖
𝑇�̂� − 𝑥𝑖

𝑇𝛽𝑡𝑟𝑢𝑒|. The data in this 

simulation approach  are generated as following  

1. The data of dependent variable 𝑦𝑖is simulated  from beta distribution with vector 

of mean 𝜇 = (𝜇𝑖), 𝑖 = 1,2, … 𝑛  , where 𝜇𝑖 =
exp (𝑥𝑖

𝑇𝛽)

1−exp (𝑥𝑖
𝑇𝛽)

 .  

2. The values of precision parameter ∅, is identification by the set {1,6}, ∅ 𝜖{1,6}. 

3. Therefore 𝑦𝑖~𝑏𝑒𝑡𝑎(𝑎 = 𝜇𝑖∅𝑖 , 𝑏 = 1 − 𝜇𝑖)∅𝑖)) 

4. The independent variables are simulated  from beta distribution standard normal 

distribution with mean zero and variance one, where  𝑥𝑖~𝑁(0,1). 

5. To achieve varying levels of multicollinearity among independent variables. We 

will use three levels of correlation for the independent variables, with the first 

being the low correlation level (𝜌 = 0.18 𝑎𝑛𝑑 𝜌 = 0.30 ), The Intermediate level 

correlation level(𝜌 = 0.40 𝑎𝑛𝑑 𝜌 = 0.55 ) and The high level correlation level(𝜌 =

0.86 𝑎𝑛𝑑 𝜌 = 0.96 ) [11], [12], [13].  

6. The two simulation examples are used with initial parameters for first example 

𝛽 = (0.2374, 0.1062,0.5217, 0.5173, 0.3146,0.3422,0.4202)𝑇 and second  example  

𝛽 = (
0.2907,0.5213,0.3671,0.4491,0.3974,0.000,0.0931,0.2041,0.000,

0.0884,0.3020,0.000
)

𝑇

. both the 

two simulation examples contain of intercept term 𝛽 = 0 and ∑ 𝛽𝑗
𝑝
𝑗=1  . 𝑝 = 7,12 

respectively 

Two simulated examples are analyzed: 

Simulation example one 

n this simulated example  the number of independent variables are seven variables 

(p=7). From the  structure of our simulation above, we obtund the following results    

 

 

Table 1. The results of MAE and MMAD for our proposed method (BPCReg) and 

BReg with precision parameter ∅ = 1. 

levels of multicollinearity  
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𝜌 = 0.96 𝜌 = 0.86 𝜌 = 0.55 𝜌 = 0.40 𝜌 = 0.30 𝜌 = 0.18 Comparison 

Methods MMAD 

(MAE) 

MMAD 

(MAE) 

MMAD 

(MAE) 

MMAD 

(MAE) 

MMAD 

(MAE) 

MMAD 

(MAE) 

N=50 

0.8691 

(0.7574) 

0.8752 

(0.8457) 

0.8910 

(0.8146) 

1.4520 

(1.3457) 

1.9542 

(1.7436) 

1.8621 

(1.5412) 

BReg 

0.8372 

(0.7158) 

0.8634 

(0.7972) 

0.8579 

(0.7945) 

1.2101 

(1.1245) 

1.6132 

(1.6424) 

1.5563 

(1.4267) 

BPCReg 

N=100  

0.8346 

(0.7024) 

0.8634 

(0.7248) 

0.8603 

(0.7124) 

1.1374 

(1.1348) 

1.6015 

(1.5647) 

1.6321 

(1.5485) 

BReg 

0.7822 

(0.6974) 

0.8396 

(0.7124) 

0.8424 

(0. 7117) 

1.1195 

(1.0124) 

1.3162 

(1.4571) 

1.3527 

(1.3457) 

BPCReg 

                                             N=150 

0.8111 

(0.7541) 

0.8590 

(0.6926) 

0.9520 

(0.6781) 

1.0101 

(1.0065) 

1.5722 

(1.3471) 

1.4526 

(1.3240) 

BReg 

    0.7816 

     (0.7213) 

0.8327 

(0.6542) 

0.9431 

(0.6672) 

0.9532 

(0.9817) 

1.2514 

(1.2158) 

1.2025 

(1.1457) 

BPCReg 

 N=200 

0.7815 

(0.7121) 

0.8586 

(0.6357) 

0.8745 

(0.6461) 

1.1842 

(0.9723) 

1.4612 

(1.1624) 

1.3135 

(1.0548) 

BReg 

0.7712 

(0.6871) 

0.8332 

(0.6157) 

0.8521 

(0.6217) 

1.1595 

(0.9647) 

1.2423 

(0.9871) 

1.1823 

(0.9472) 

BPCReg 

                                          N=250 

0.7381 

(0.5417) 

0.8372 

(0.6034) 

0.8567 

(0.6127) 

1.1291 

(0.9568) 

1.3623 

(0.9637) 

1.2866 

(0.9256) 

BReg 

0.7496 

(0.5216) 

0.8116 

(0.5817) 

0.8245 

(0.6049) 

1.0943 

(0.9428) 

1.1299 

(0.9724) 

1.1180 

(0.9124) 

BPCReg 

Note: In the parentheses are MAE  

Table 1. presents a synopsis of the MAE and MMAD for the two methods in the 

comparison. It is shows that from Table 1 that the performance of BPCReg appears very 

good compared to the BReg method. In general, the MMAD and MAE  computed by our 

proposed method  is much smaller than MMAD and MAE  computed by BReg method 

[14]. As we observe from the results in the table above, when the correlation coefficients 

increase, the values of the Two criteria measures (MMAD), (MAE) decrease across all 

sample sizes. We observe that our proposed method has outperformed the another 

method across all studied scenarios precision parameter ∅ = 1. 

Table 2. The results of MAE and MMAD for our proposed method (BPCReg) and 

BReg with precision parameter ∅ = 6. 

levels of multicollinearity 

𝜌 = 0.96 𝜌 = 0.86 𝜌 = 0.55 𝜌 = 0.40 𝜌 = 0.30 𝜌 = 0.18 Comparison 

Methods MMAD 

(MAE) 

MMAD 

(MAE) 

MMAD 

(MAE) 

MMAD 

(MAE) 

MMAD 

(MAE) 

MMAD 

(MAE) 

N=50 

0.5272 

(0.5127) 

0.537 8 

(0.5248) 

0.6835 

(0.5674) 

1.0927 

(1.0021) 

1.1078 

(1.0567) 

1.2395 

(1.2182) 

BReg 

0.5143 

(0.5028) 

0.4874 

(0.5064) 

0.6484 

(0.5428) 

1.0122 

(0.9642) 

1.0032 

(0.9587) 

1.2051 

(1.1548) 

BPCReg 

    N=100 

0.5752 

(0.4572) 

0.6415 

(0.4541) 

0.8224 

(0.5127) 

0.9232 

(0.9347) 

0.9874 

(0.9245) 

1.3132 

(0.1154) 

BReg 

0.565 6 0.6262 0.8013 0.9126 0. 8632 1.1143 BPCReg 
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(0.4361) (0.4317) (0.5024) (0.9108) (0.9142) (0.1064) 

N=150  

0.5334 

(0.4127) 

0. 5381 

(0.4288) 

0.7596 

(0.4829) 

0.8934 

(0.8928) 

0.8942 

(0.9057) 

0.9861 

(0.9457) 

BReg 

0.5222 

(0.4067) 

0. 5113 

(0.4187) 

0.7017 

(0.4687) 

0.8235 

(0.8561) 

0.7552 

(0.8275) 

0.9637 

(0.9542) 

BPCReg 

   N=200 

0.5523 

(0.4005) 

0.5302 

(0.4029) 

0.5817 

(0.4381) 

0.7354 

(0.8246) 

0.7525 

(0.8140) 

0.8145 

(0.7854) 

BReg 

0.5227 

(0.3981) 

0.5145 

(0.3829) 

0.5364 

(0.4218) 

0.6212 

(0.7861) 

0.7135 

(0.7951) 

0.7533 

(0.6781) 

BPCReg 

                                         N=250   

0.4821 

(0.3762) 

0.4734 

(0.3719) 

0.5198 

(0.4125) 

0.6352 

(0.7124) 

0.652 5 

(0.6942) 

0.7236 

(0.6582) 

BReg 

0.4136 

(0.3595) 

0.4213 

(0.3527) 

0.4842 

(0.3648) 

0.6521 

(0.6827) 

0.5423 

(0.6572) 

0.6741 

(0.6425) 

BPCReg 

Note: In the parentheses are MAE  

Table 2. presents a synopsis of the MAE and MMAD for the two methods in the 

comparison. It is shows that from Table 2 that the performance of BPCReg appears very 

good compared to the BReg method . In general, the MMAD and MAE  computed by our 

proposed method  is much smaller than MMAD and MAE  computed by BReg method 

[15], [16]. As we observe from the results in the table above, when the correlation 

coefficients increase, the values of the Two criteria measures (MMAD), (MAE) decrease 

across all sample sizes. We observe that our proposed method has outperformed the 

another method across all studied scenarios with precision parameter ∅ = 6. 

Simulation example two 

In this simulated example  the number of independent variables are nine variables 

(p=12). From the  structure of our simulation above, we obtund the following results    

Table 3. The results of MAE and MMAD for our proposed method (BPCReg) and 

BReg with precision parameter ∅ = 1. 

levels of multicollinearity 

𝜌 = 0.99 𝜌 = 0.95 𝜌 = 0.90 𝜌 = 0.85 𝜌 = 0.75 𝜌 = 0.50 Comparison Methods 

MMAD MMAD MMAD MMAD MMAD MMAD 

N=50 

0.7924 

(0.7659) 

0.8052 

(0.7567) 

0.8178 

(0.8563) 

0.8246 

(0.7692) 

0.8467 

(0.7924) 

0.8725 

(0.7865) 

BReg 

0.7642 

(0.7466) 

0.7954 

(0.7457) 

0.8100 

(0.8267) 

0.8125 

(0.7538) 

0.8134 

(0.7689) 

0.8514 

(0.7496) 

BPCReg 

                                   N=100 

0.5913 

(0.5792) 

0.5620 

(0.5296) 

0.5685 

(0.5147) 

0.5742 

(0.5506) 

0.5881 

(0.5542) 

0.5827 

(0.5748) 

BReg 

0.4460 

(0.5597) 

0.4843  

(0.5129) 

0.4962 

(0.5095) 

0. 5013 

(0.5274) 

0. 5172 

(0.5279) 

0. 5342 

(0.5627) 

BPCReg 

                         N=150 

0.5644 

(0.4387) 

0.5941 

(0.5067) 

0.6133 

(04927) 

0.7428 

(0.5196) 

0.7645 

(0.5197) 

0.8071 

(0.5469) 

BReg 

0.5681 

(0.4264) 

0.5783 

(0.4837) 

0.5971 

(0.4728) 

0.6121 

(0.4837) 

0.7591 

(0.4983) 

0.7723 

(0.5356) 

BPCReg 

                     N=200 

0.5254 

(0.4186) 

0.5620 

(0.4672) 

0.5543 

(0.4692) 

0.5617 

(0.4682) 

0.5543 

(0.4834) 

0.5743 

(0.5249) 

BReg 
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0.4362 

(0.3861) 

0.4538 

(0.4463) 

0.4724 

(0.4398) 

0. 4928 

(0.4583) 

0. 4942 

(0.4751) 

0. 5221 

(0.5149) 

BPCReg 

                N=250 

0.5529 

(0.3672) 

0.5748 

(0.4291) 

0.6744 

(0.4167) 

0.7546 

(0.4276) 

0.7755 

(0.4711) 

0.7945 

(0.4864) 

BReg 

0.5346 

(0.3514) 

0.5732 

(0.4062) 

0.5822 

(0.3951) 

0.7243 

(0.4189) 

0.7282 

(0.4567) 

0.7436 

(0.4638) 

BPCReg 

Note: In the parentheses are MAE  

Table .3. presents a synopsis of the MAE and MMAD for the two methods in the 

comparison. It is shows that from Table 3 that the performance of BPCReg appears very 

good compared to the BReg method . In general, the MMAD and MAE  computed by our 

proposed method  is much smaller than MMAD and MAE  computed by BReg method. 

As we observe from the results in the table above, when the correlation coefficients 

increase, the values of the Two criteria measures (MMAD), (MAE) decrease across all 

sample sizes [17]. We observe that our proposed method has outperformed the another 

method across all studied scenarios with precision parameter ∅ = 1. 

Table 4. The results of MAE and MMAD for our proposed method (BPCReg) and 

BReg with precision parameter ∅ = 6. 

levels of multicollinearity 

𝜌 = 0.99 𝜌 = 0.95 𝜌 = 0.90 𝜌 = 0.85 𝜌 = 0.75 𝜌 = 0.50 Comparison Methods 

MMAD MMAD MMAD MMAD MMAD MMAD 

0.4045 

(0.3471) 

0.4098 

(0.3978) 

0.4208 

(0.3767) 

0.4237 

(0.4058) 

0.5317 

(0.4395) 

0.5483 

(0.4567) 

BReg 

0.3824 

(0.3275) 

0.4079 

(0.3762) 

0.4596 

(0.3498) 

0.4672 

(0.3987) 

0.5226 

(0.4189) 

0.5145 

(0.4387) 

BPCReg 

     N=100 

0.5377 

(0.3149) 

0.5639 

(0.3542) 

0.6522 

(0.3128) 

0.6789 

(0.3794) 

0.7561 

(0.4068) 

0.7814 

(0.4167) 

BReg 

0.5147 

(0.3019) 

0.5581 

(0.3351) 

0.5384 

(0.3059) 

0.6703 

(0.3591) 

0.7202 

(0.3892) 

0.7295 

(0.3853) 

BPCReg 

     N=150 

0.3924 

(0.2897) 

0.5297 

(0.3187) 

0.4016 

(0.2972) 

0.5056 

(0.3381) 

0.5173 

(0.3728) 

0.5348 

(0.3647) 

BReg 

0.3643 

(0.2758) 

0.3846 

(0.3057) 

0.4334 

(0.2875) 

0.4714 

(0.3195) 

0.4832 

(0.3517) 

0.5049 

(0.3429) 

BPCReg 

N=200 

0.4329 

(0.2637) 

0.5169 

(0.2954) 

0.5246 

(0.2761) 

0.5425 

(0.2978) 

0.6243 

(0.3498) 

0.6437 

(0.3259) 

BReg 

0.4253 

(0.2548) 

0.4577 

(0.2873) 

0.4924 

(0.2697) 

0.5015 

(0.2792) 

0.5864 

(0.3384) 

0.5227 

(0.3128) 

BPCReg 

N=250 

0.3571 

(0.2497) 

0.3733 

(0.2691) 

0.3827 

(0.2458) 

0.4655 

(0.2781) 

0.4264 

(0.3275) 

0.4838 

(0.2972) 

BReg 

0.3227 

(0.2453) 

0.3370 

(0.2429) 

0.3618 

(0.2285) 

0.4165 

(0.2483) 

0.4142 

(0.3157) 

0.4552 

(0.2876) 

BPCReg 

Note: In the parentheses are MAE  

Table 4. presents a synopsis of the MAE and MMAD for the two methods in the 

comparison. It is shows that from Table 4 that the performance of BPCReg appears very 

good compared to the BReg method . In general, the MMAD and MAE  computed by our 

proposed method  is much smaller than MMAD and MAE  computed by BReg method 

[18], [19]. As we observe from the results in the table above, when the correlation 

coefficients increase, the values of the Two criteria measures (MMAD), (MAE) decrease 
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across all sample sizes. We observe that our proposed method has outperformed the 

another method across all studied scenarios with precision parameter ∅ = 6. 

Real Data  

This study will concentrate on a medical phenomenon represented by herpes disease. 

Herpes, a widespread viral ailment, is triggered by the herpes simplex virus (HSV), which 

consists of two primary types: HSV-1, responsible for cold sores (oral herpes), and HSV-

2, which usually results in sores in the genital region (genital herpes). Direct contact with 

the skin or bodily fluids of an infected individual facilitates the virus's transmission [20]. 

The  our data is collected from Al-Diwaniyah Hospital with sample size 127 observation . 

This disease can be identified by an increase in the percentage of the (Immunoglobulin G) 

IgG index. Therefore, IgG index is represented the response variable (y is IgG index )is 

influenced by a set of independent variables, which are: 𝑥1 :Packed Cell Volume (PCV), 𝑥2 

: Erythrocyte Sedimentation Rate (ESR) , 𝑥3 : Platelets (PLT) , 𝑥4 : Procalcitonin (PCT), 𝑥5 : 

Mean Platelet Volume (MPV) Mean Platelet Volume and 𝑥6 : Serum Creatinine 

(S.Creatinine). Before starting the data analysis using the proposed method, it is essential 

to check whether the data suffers from the problem of multicollinearity or not. In the 

current study, we will focus on the simplest measure, which is finding the correlation 

matrix between the independent variables.  

Table 5. Shows the correlation matrix between the independent variables 

Variables PCV ESR PLT PCT MPV S.Creatinine 

PCV 1 0.231 0.056 0.152 0.006 0.121 

ESR  1 0.547 0.894 0.258 0.793 

PLT   1 0.247 0.125 0.381 

PCT    1 0.527 0.142 

MPV     1 0.491 

S.Creatinine      1 

 From the correlation matrix results, we observe a high and clear correlation between 

some independent variables. The peak correlation coefficient between the two variables 

(ESR,PCT) reached (0.894). A high correlation between independent variables is 

considered a preliminary test for the problem of multicollinearity. By observing the results 

of the correlation matrix among our independent variables, we can determine the 

presence of multicollinearity in the study model. The estimated parameters for our 

proposed method and the other method can be presented in the table 5 below. 

Table 6. Prameters estimates for our proposed method (BPCReg) and other method 

The variables BReg BPCReg 

            Intercept  1.6421 0.5341 

PCV 1.0062 0.2457 

ESR 0.8654 0.2543 

PLT 0.5672 0.5314 

PCT 0.7678 0.4861 

MPV -0.0267 -1.5647 

S.Creatinine -0.5654 -0.0083 

From the estimated parameter values above for both methods, we observe that there 

are both positive and negative effects on the response variable (IgG). We will rely on these 

estimated parameters to calculate the mean squared error (MSE) for the real data (Table 

6). 

 

Table 7. The values of (MSE) for the our proposed method BPCReg and BReg  

MSE Comparison Methods 

1.9315 BReg 

0.6824 BPCReg 
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From the results shown above, we observe that the mean squared error (MSE) 

calculated using our proposed method is significantly lower than the MSE obtained using 

the other comparison method. Based on this result, we can conclude that our proposed 

method also demonstrates high efficiency with real data, even in the presence of the 

multicollinearity problem.(Table 7) 

4. Discussion  

The results from both simulation and real data analysis strongly demonstrate the 

effectiveness of the Beta Principal Component Regression (BPCReg) model in addressing 

multicollinearity and enhancing prediction accuracy. Across various levels of correlation 

and sample sizes, BPCReg consistently yielded lower Mean Absolute Error (MAE) and 

Median of Mean Absolute Deviations (MMAD) compared to the standard Beta Regression 

(BReg) model. These improvements indicate that transforming the original correlated 

predictors into uncorrelated principal components helps to stabilize parameter estimates 

and improve model performance. In real data analysis using herpes-related medical data, 

BPCReg also outperformed BReg, evidenced by a substantially lower Mean Squared Error 

(MSE). These findings imply that BPCReg offers both robustness and generalizability, 

making it a suitable method in domains prone to multicollinearity, such as medical or 

econometric research. Nevertheless, one limitation of this approach lies in the 

interpretability of principal components, which may lack direct real-world meaning. 

Future research could explore integrating regularization techniques or Bayesian 

frameworks with BPCReg to further enhance its flexibility and estimation accuracy in 

more complex or high-dimensional datasets. 

5. Conclusion 

The structure and type of the response variable data determine the appropriate model 

type that will provide us with good estimators and models with high predictive power. 

When the data of the response variable consists of percentages, conventional regression 

models will fail to produce efficient estimators. To overcome this issue, a Beta regression 

model can be used. In most cases, regression models suffer from some standard problems, 

and it is difficult to find good estimators in the presence of these issues. One of the most 

serious standard problems is multicollinearity. To overcome this issue, multicollinearity 

can be addressed by using certain treatment methods. One of the methods used is 

Principal Component Regression (PCR). In this research, a combination of the Beta 

regression model with Principal Component Regression was applied to develop a robust 

model that effectively addresses the multicollinearity problem. We observe that our 

proposed model demonstrates very high efficiency in estimating the Beta regression 

model, even in the presence of perfect or semi-perfect multicollinearity. This model 

exhibits a high capability for generalization and flexibility in estimating Beta regression 

models from it captures the complex relationships through the independent variables. The 

results confirm that the our proposed method (BPCReg) is effective and robust when 

applied with different data. 

Regression models should be carefully selected to match the available data in order 

to avoid obtaining misleading results that do not accurately represent the phenomenon 

being studied. When we encounter a econometrics  problem in the model being studied, 

the appropriate method should be employed to overcome this issue. Therefore, we 

recommend using our proposed approach with Beta regression models in the presence of 

multicollinearity problems. We recommended extended our proposed method with 

regularization method  to improve ability and generalizability.  
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