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Abstract: The problem of outliers and high leverage points is one of the most prominent challenges 

facing the design of statistical models, especially in regression models, as they have a significant 

impact on distorting the results of statistical estimation. This research aims to address the impact of 

high leverage points in a beta regression model using robustness estimation methods, specifically 

the GM6 multistage estimator (GM6-BR). A comparison of four estimation methods was studied: 

traditional estimation (BR), least discrete squares estimator (LTS-BR), generalized estimation (GM-

BR), and GM6-BR. A simulation study was conducted on two models: one linear and the other 

nonlinear, with data contamination of 10% and 20% introduced to test the robustness of the different 

methods. The results demonstrated a clear superiority of the GM6-BR method in terms of reducing 

error (RMSE, MAE) and skewness (BIAS), while maintaining stability in the presence of 

contamination. Practical application on real data also showed that GM6-BR was least affected by 

outliers compared to other methods, while the traditional BR method exhibited the highest level of 

distortion. Therefore, the study recommends adopting GM6-BR as an effective and accurate option 

for analyzing data containing high leverage points or outliers, especially within beta regression 

models. 

Keywords: Beta regression, GM6-BR-resistant estimation, high leverage points, outliers 

1. Introduction 

The issue of outliers is one of the oldest problems in statistics, as the presence of these 

values affects statistical analysis results and can lead to misleading conclusions. Classified 

extreme values into three types: vertical extreme values, which appear in the response 

variable (𝑦) and regression residuals; high leverage points (HLPoints), which appear in 

the independent variables (𝑥); and influential observations, which affect the relationship 

between the independent variables and the response variable [1], [2]. 
To address this issue, new statistical techniques have been developed that are 

resistant to the influence of outliers, known as robust methods. These include M-

estimators, MM-estimators, the standard deviation estimator (S), the Least Trimmed 

Squares (LTS) estimator, the Least Median of Squares (LMS) estimator, and others. 

However, these estimators tend to weaken in the presence of high leverage points. To 

overcome this limitation, Schweppe, as described by , proposed a powerful method 

known as GM. Over time, multistage GM estimators have been developed into several 

types, the most common being the GM6 multistage estimator introduced by Coakley and 

Hettmansperger [3], [4], [5]. 
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When the data are in the form of fractions or percentages and are constrained within 

the interval (0,1), the beta regression model is used to estimate the parameters. Beta 

regression is a widely used statistical model, applied in various fields such as economics, 

medical sciences, unemployment rates, family income ratios, and more. Maximum 

Likelihood Estimation (MLE) is commonly employed to estimate the parameters of the 

beta regression model. Introduced the beta regression model, and numerous studies have 

explored different aspects of this model [6]. 
For instance, examined the behavior of maximum likelihood estimation in a beta 

regression model where the distribution parameters are nonlinear functions of linear 

combinations of explanatory variables with unknown coefficients.  conducted a study that 

focused on point and interval optimization of the beta regression model.  presented a 

paper describing the BETAREG package, which provides a beta regression class in the R 

statistical computing system.  investigated separation measures in beta regression models, 

while)  presented a study titled "Model Selection Criteria in Beta Regression with Variable 

Dispersion." 
Additionally,  conducted a study on the development of a robust inference procedure 

for beta regression models.  proposed Liu shrinkage estimators for beta regression models, 

while   presented a study on Bayesian empirical regression for limited responses with 

unknown support.  introduced the Dawood-Cabria estimator for beta regression models, 

whereas Abu studied beta ridge regression estimators. Furthermore,  proposed a robust 

semi-parametric inference approach for two-stage production models using beta 

regression. conducted a comparative study on robust estimation in beta regression models 

in the presence of outliers.  examined robust estimation in beta regression using the Lq 

maximum likelihood meth od.  applied robust beta regression using the logit 

transformation, and Heng and Lang  conducted a study involving an initial estimation of 

the proportion of outliers in robust regression [7], [8]. 

In this study, we propose a  GM6 estimation approach for beta regression models with 

responses in the (0,1) interval, aiming to mitigate the influence of high leverage points in 

the independent variables [9]. Specifically, we employ the multistage Generalized M-

estimator of sixth order (GM6) to robustly estimate the model parameters. To facilitate 

this, we first develop a Least Trimmed Squares (LTS) estimation procedure tailored for 

beta regression, which serves as a robust initial estimate for the GM6 procedure. 

Additionally, we incorporate the robust Mahalanobis Distance method to detect high 

leverage observations in the covariates, ensuring a more reliable and robust estimation 

process. 

2. Materials and Methods 

1. Beta distribution  

Beta regression is used when the data is within the interval (0,1) and was first 

expressed by Ferrari and Cribari-Neto by relating the mean function of the response 

variable to a set of linear predictors via a monotonic differentiable function called the 

correlation function  . 

Let 𝑦 be a continuous random variable having a beta distribution with the probability 

density function y as follows: 

    𝑓(𝑦; 𝑎, 𝑏)=
𝛤(𝑎+𝑏)

𝛤(𝑎)𝛤(𝑏)
𝑦𝑎−1(1 − 𝑦)𝑏−1            0< 𝑦 < 1  , 𝑎 > 0, 𝑏 > 0                 

(1) 

Where 𝛤(. ) is the gamma function , a  and b are two shape parameters . The mean 

and   variance  of  y are as follows: 

                                        E (y) = 
𝑎

𝑎+𝑏
     , Var = 

𝑎𝑏

(𝑎+𝑏)2(𝑎+𝑏+1)
 

To obtain a regression structure for the mean response and accuracy parameter, 

different beta density parameters are obtained. 

Let μ = 
𝑎

𝑎+𝑏
  and  λ= a +b   ,  𝑎 = 𝜇λ , and  𝑏 = (1 − 𝜇)λ , In the new 

parameterization, the density of y can thus be expressed as follows: 

𝑓(𝑦; 𝜇, 𝜆)= 
𝛤(𝜆)

𝛤(𝜇𝜆)𝛤((1−𝜇)𝜆
𝑦𝜇𝜆−1 (1 − 𝑦)(1−𝜇)𝜆−1                                                  (2) 
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Where 0 < μ < 1 and   λ > 0. We consider the notation   y ∼ Beta (μ ,λ). The mean and 

variance are expressed by: 

                      𝐸 (𝑦|𝜇 , 𝜆 ) = 𝜇,                  and       𝑉𝑎𝑟 (𝑦|𝜇 , 𝜆) =  
𝑉(𝜇)

1+𝜆
                                                         

Where V(μ) = μ(1−μ), μ is the average and λ can be interpreted as an accuracy 

parameter. Beta regression model was developed assuming a homogeneous accuracy 

parameter in the form of a generalized linear model for the location parameter using a 

correlation function  . Let 𝑦2, 𝑦2, … . , 𝑦𝑛 be independent random variables, where each 𝑦 

, t = 1,2, ... , 𝑛 follows the density as shown in Equation (2) with mean 𝜇 and unknown 

precision  𝜆. The beta regression model is obtained by assuming that 𝑦 ~𝛽𝑒𝑡𝑎 (𝜇, λ),    t = 

1, 2, . . . and 𝑛, and the logarithmic link function can be written as follows: 

       𝑔 (𝜇 ) = 𝑙𝑜𝑔(
𝜇𝑡

1−𝜇𝑖
)= 𝜂𝑖  =  ∑ 𝑥𝑖𝑗

′ 𝛽𝑗
𝑛
𝑖=1             , 𝑗 = 1,2, . . . ,𝑘                                     (3) 

  Where 𝑥𝑡 is a (𝑘 × 1) vector of predictors and 𝛽′ = (𝛽1, … … , 𝛽𝑛) is a 

(𝑘 × 1)vector of unknown regression parameters. Moreover ,we assume that the link 

function g(.) : [0,1] → 𝑅and there exist several different link functions that map the linear 

predictor onto the space [0,1]such as: 

               Logit     𝑔(𝜇(𝑥𝑖)) = 𝑙𝑛 (
𝜇(𝑥𝑖)

1−𝜇(𝑥𝑖)
) = 𝜂𝑡 

where ln (.) is the natural logarithm and is the standard normal cumulative 

distribution function .Hence, the beta regression model assumes that the mean of the 

dependent variable can be represented in the following form: 

𝑔(𝜇(𝑥𝑖)) = 𝜂𝑖 = 𝑥𝑖
′𝛽 

When using the logit link function, the beta regression model is obtained by assuming 

that the conditional mean of  𝑦𝑡 can be written as 

                                  𝜇(𝑥𝑖) =
𝑒𝑥𝑖

′𝛽

1+𝑒𝑋𝑖
′𝛽

                                                                 (4) 

Estimation of the beta regression parameters is done by using the ML method 

Espinheira et al., (2008) The log-likelihood function of  the beta regression model is given 

by: 

𝐿(𝜇𝑖, 𝜆; 𝑦𝑖) = ∑ {𝑙𝑜𝑔𝛤(𝜆) − 𝑙𝑜𝑔𝛤(𝜇𝑖(𝜆) − 𝑙𝑜𝑔𝛤((1 − 𝜇𝑖)(𝜆)) + (𝜇𝑖(𝜆) −𝑛
𝑖=1

1) log(𝑦𝑖) + ((1 − 𝜇𝑡)(𝜆) − 1)log (1 − 𝑦𝑡)}                                                                                          

(5) 

Differentiating the log-likelihood in Eq. (4) with respect  to 𝛽  gives us the score 

function for 𝛽 which is given by: 

                        𝑈(𝛽) = 𝜆𝑥′ 𝐹(𝑦∗ − 𝜇∗)                                                                 (6) 

Where    𝐹 = 𝑑𝑖𝑎𝑔 (
1

𝑔′(𝜇𝑖)
, … . . ,

1

𝑔′(𝜇𝑛)
) ,      𝑦∗ = (𝑦1

∗, … … , 𝑦𝑛
∗)′ and     𝑦𝑖

∗ =

log (
𝑦𝑖

1−𝑦𝑖
)                                  

 𝜇∗ = (𝜇1
∗, … … , 𝜇𝑛

∗ )′  and     𝜇𝑖
∗ = φ(𝜇𝑡𝜆) − 𝜑((1 − 𝜇𝑡)𝜆) such that 𝜑 (∙) 

denoting the digamma function. The iterative reweighted least-squares (IWLS) algorithm 

or Fisher scoring algorithm used for estimating 𝛽 Espinheira et al., (2015) .The form of 

this algorithm can be written as : 

                                      𝛽(𝑟−1) = 𝛽(𝑟) +(𝐼𝛽𝛽
(𝑟)

)−1 𝑈𝛽
(𝑟)

 (𝛽) 

Where 𝑈𝛽
(𝑟)

 is the score function defined in Eq. (6 ), and  𝐼𝛽𝛽
(𝑟)

is the information matrix 

for 𝛽 , see   for more details. The initial value of 𝛽 can be obtained by the least squares 

method, while the initial value for each precision parameter equals 

                �̂�𝑖 =
�̂�𝑖(1−�̂�𝑖)

�̂�𝑖
2                                                                                   (7) 

Where �̂�  and 𝜎𝑖
2 values are obtained from linear regression .Given 𝑟 = 0,12, … .. is 

the number of iterations that are performed, convergence occurs when the difference 

between successive estimates becomes smaller than a given small constant .At the final 

step, the ML estimator of 𝛽 is obtained as: 
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                                    �̂�𝐺𝑀 = (𝑥′�̂�𝑥)−1𝑥′ �̂��̂�                                                                  (8) 

Where X is an  𝑛 × 𝑝 matrix of regressors, �̂� = �̂� +  �̂�−1 �̂� (𝑦∗ − 𝜇∗) , and �̂� = 

𝑑𝑖𝑎𝑔(�̂�1, … … �̂�𝑛) 

               �̂�𝑖 = (
1−�̂�2)

�̂�2
{�̂� (

�̂�𝑖(1−�̂�2)

�̂�2 ) + 𝜑′ (
(1−�̂�𝑖)(1−�̂�2)

�̂�2 )}
1

{𝑔′(�̂�𝑡)}2                                      

(9) 

 

2.  Generalized M-Beta Regression (GM-BR). 

This method relies on the use of the (Generalized M-Estimator-GM) within a beta 

regression framework to obtain more robust and stable estimates in the presence of high 

leverage points or outliers. The GM-BR estimate is obtained through several steps. First, 

initial estimates are obtained using a traditional beta regression model. Then, the residuals 

and their appropriate scale are calculated. The residuals are then standardized to calculate 

the standardized values. Next, weights are assigned using the Hat matrix to detect high 

leverage points. A weight function (such as the Huber function) is then applied based on 

the standardized residuals. The parameters are then re-estimated using the new weights 

to reduce the influence of outliers. Finally, the steps are repeated until a steady state is 

reached. 

3. GM6 Estimator 

To address high leverage points (HLPoints), Schweppe, as described by Hill and Paul, 

proposed a powerful method known as the Generalized Limited-Impact M-Estimator 

(GM-Estimator). However, the GM1 estimator has limited-impact properties, with an 

efficiency of 95% and asymptotic distribution properties similar to the M-estimator. Its 

breakdown point does not exceed (1/p), meaning that the breakdown point is inversely 

proportional to the number of independent variables. Consequently, as dimensionality 

increases, the breakdown point approaches zero. 

The strategies used to reduce the influence of high leverage points in the X-direction 

are not very effective, as these points may not easily appear in the corresponding diagonal 

elements ℎ𝑖𝑖 when there are many leverage points. Therefore, multistage GM estimators 

have been developed into several types, with GM6, introduced by Coakley and 

Hettmansperger, being the most common. This estimator has high efficiency in normal 

distributions, limited-impact properties, and a high stopping point. It can be expressed as 

a solution to the normal equations given by 

           ∑ 𝑘𝑖𝜑(𝑛
𝑖=1

𝑦
𝑖−𝑥𝑖

′�̂�

𝑠𝑖
)𝑥𝑖 = 0                                                                     (10) 

               �̂� = (𝑥𝑇𝑤𝑥)−1𝑥𝑇𝑤𝑦                                                                     (11) 

The general procedure for GM6 is by choosing a good initial estimator such as  LTS 

and applying many stages to achieve desirable properties. The initial weights of GM6-

estimators that  minimize the impact of leverage points in (10) are computed using the 

RMD values based on MCD or MVE, which are as follows.                                                        

𝑘𝑖 = 𝑚𝑖𝑛[1, (
𝑥(0.95,𝑝)

2

𝑅𝑀𝐷2
)]       ,        t=1,2,……,n     

THE TWO ROBUST PARAMETERS OF LOCATION AND SCALE ARE USED AS A SUBSTITUTE 

FOR THE ARITHMETIC MEAN AND VARIANCE. ACCORDINGLY, THE ROBUST MAHALANOBIS  

DISTANCE IS WRITTEN AS FOLLOWS: 

                     𝑅𝑀𝐷𝑖 = √(𝑥𝑖 − �̅�𝑅𝑜𝑏)′C(𝑋)𝑅𝑜𝑏
−1 (𝑥𝑖 − �̅�𝑅𝑜𝑏)                                         (12) 

                       𝐶(𝑋) =
1

𝑛−1
∑ (𝑥𝑖 − �̅�)′(𝑥𝑡 − �̅�)𝑛

𝑖=1               ,  Rob:  means Robust 

 

So for the row t that corresponds to the value of Mahalanobis after exceeding the 

critical value of chi-square with a degree of freedom of k where k represents the number 

of independent variables and a significance level of 0.95, then the row contains the 

outliner: 

𝑅𝑀𝐷𝑖 > √𝑥2(𝑘, 0.95) 
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The same procedure is used to identify rows containing outliers by comparing the 

critical value𝑥2(𝑘, 0.95) with the robust Mahalanobis (𝑅𝑀𝐷𝑖) distance. 

4. Algorithm. 

GM6 method is one of the important methods for treating outliers and leverage points 

as it can be used to reduce the effect of leverage points in independent variables (x) when 

estimating the parameters of beta regression model An algorithm for GM6-estimator can 

be written in the following steps:  

Step 1: Choosing an initial estimates 𝜷(0) from  LTS beta regression, to get a high 

breakdown of 50%.  LTS estimator for beta regression can be construct as follows: 

a. Choosing the trimming parameter h , where ℎ = (𝑛 + 𝑝 + 1) 2⁄ . 
b. Compute the residuals for each candidate 𝛽 as 𝑟𝑖

 = 𝑦𝑖 − 𝜇𝑖
 . 

c. Sort the   squares residuals according order as 𝑟(1)
2 ≤ 𝑟(2)

2 ≤ ⋯ ≤ 𝑟(𝑛)
2 . 

d. Compute the LTS objective function  𝐿𝑇𝑆(𝛽) = ∑ 𝑟(𝑖)
2ℎ

𝑖=1 . 

e. Using robust algorithm ( FAST-LTS  (Rousseeuw and Driessen 1999)) for 

computation.  

Step 2:  For each iteration  t  compute    𝜇𝑖
(𝑡−1)

= 𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐 (𝑥𝑖𝜷(𝑡−1)) =
𝑒𝑥𝑝(𝑥𝑖𝛽(𝑡−1))

1+𝑒𝑥𝑝(𝑥𝑖𝛽(𝑡−1))
 .  

Step 3: Compute the residuals 𝑟𝑖
(𝑡−1)

= 𝑦𝑖 − 𝜇𝑖
(𝑡−1)

  and scale �̂�(𝑡−1) = 1.4826 ∗
𝑚𝑒𝑑𝑖𝑎𝑛 𝑜𝑓  

𝑙𝑎𝑟𝑔𝑒𝑠𝑡(𝑛 − 𝑝) 𝑜𝑓𝑡ℎ𝑒 |𝑟𝑖
(𝑡−1)

| .    and then compute the standardized residuals 

𝑢𝑖
(𝑡−1)

=
𝑟𝑖

(𝑡−1)

�̂�(𝑡−1). 

Step 4: employ the estimated residuals (𝑟𝑖
 ) to compute the initial weights 𝑘𝑖 =

𝑚𝑖𝑛 [1, (
𝜒(0.95,𝑝)

2

𝑅𝑀𝐷2
)] , and then compute the standardized residuals 𝑢𝑖

(𝑡−1)
=

𝑟𝑖
(𝑡−1)

�̂�(𝑡−1)∗𝑘𝑖
 .  

 

Step 5: Based on Huber weight function standardized residuals 𝑢𝑖
   use to compute 

the robust weights using the form  𝑤𝑖
(𝑡−1)

=
𝜓[(𝑦𝑖−𝜇𝑖

(𝑡−1)
)/𝑘𝑖�̂�]

(𝑦𝑖−𝜇
𝑖
(𝑡−1)

)/𝑘𝑖�̂�
. 

Step 6: compute �̂�𝑡 using the form �̂�𝑡 = (𝑋′𝑊(𝑡−1)𝑋)−1𝑋′𝑊(𝑡−1)𝑌 

Step 7: Steps (2-6) are repeated until convergence 

3. Result  

Simulation Study : 

To evaluate the estimation efficiency and robustness of Beta Regression (BR), 

Generalized M Beta Regression (GM-BR), and Multi-stage Generalized M Beta Regression 

(MS-GM-BR), we design a comprehensive simulation study under two scenarios that vary 

in the functional relationship between covariates and the response. In both examples, the 

response variable 𝑦 ∈ (0,1),  is generated from a Beta distribution with mean 𝜇 linked 

to covariates through a logit link: 𝑙𝑜𝑔𝑖𝑡(𝜇𝑖) = 𝜂𝑖 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2. Covariates are 

independently drawn with 𝑥1~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1) and 𝑥2~𝑁𝑜𝑟𝑚𝑎𝑙(0,1). The Beta shape 

parameters are given by 𝜇𝑖𝜑  and (1 − 𝜇𝑖)𝜑, with two levels of the precision parameter 

𝜑 ∈ {5,10} considered [10], [11]. To assess robustness, we introduce contamination in 

the response by randomly replacing a portion of the values with draws from an alternative 

distribution ,  specifically Beta(2,5) while the predictor variables are generated as 

𝑥1~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(5,15) and 𝑥2~𝑁𝑜𝑟𝑚𝑎𝑙(2,10).  Contamination is applied at two 

levels: 10% and 20%. The models are evaluated using various criteria including parameter 

bias, RMSE, prediction MAE, Robustness Index calculate as: 

𝑅𝑜𝑏𝑢𝑠𝑡𝑛𝑒𝑠𝑠 𝐼𝑛𝑑𝑒𝑥 =
𝑅𝑀𝑆𝐸𝑐𝑜𝑛𝑡. − 𝑅𝑀𝑆𝐸𝑐𝑙𝑒𝑎𝑛

𝑅𝑀𝑆𝐸𝑐𝑙𝑒𝑎𝑛

 × 100% 
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In Simulation Example 1, we consider a linear relationship between the covariates 

and the response. The true model is given by 𝜂𝑖 = 1 + 2𝑥1𝑖 − 𝑥2𝑖, and the response is 

drawn from the Beta distribution accordingly. We vary the sample size across three levels: 

n=50, n=100 and n=500 to study small, moderate, and large-sample behavior. For each 

sample size, we simulate datasets under both low (𝜑 = 5) and moderate (𝜑 = 10) 

precision. Additionally, contamination is introduced at two levels (10% and 20%) to 

evaluate robustness [12]. This example helps quantify the efficiency of each method under 

ideal conditions and their degradation in the presence of outliers. 

In Simulation Example 2, we extend the complexity by introducing a nonlinear effect 

in the true model. Specifically, we define the predictor as 𝜂𝑖 = 1 + 2𝑥1𝑖 − 𝑥2𝑖
2

 
, 

incorporating a quadratic term to induce model curvature. This represents a scenario 

where the linear assumption is violated, testing the adaptability of each method. As in 

Example 1, we examine the same three sample sizes (n=50,100,500), two precision 

parameters (𝜑 = 5,10), and two contamination levels (10% and 20%). The contamination 

again consists of randomly replacing a portion of the response values with draws from a 

skewed Beta(2,5) distribution, while the predictor variables are generated as 

𝑥1~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(5,15) and 𝑥2~𝑁𝑜𝑟𝑚𝑎𝑙(2,10). This example is particularly useful for 

evaluating the robustness and flexibility of the methods under model misspecification and 

nonlinearity [13], [14]. 

4. Discussion  

Table (1): Comparison of the performance of four estimation methods (BR, LTS-BR, 

GM-BR, GM6-BR) in the case of a linear relationship between variables and 𝜑= 5 

Method n Contamination Avg_ RMSE Avg _MAE Robustness _Index* 

GM6-BR 50 10% 0.178 0.151 13.20% 
 50 20% 0.221 0.189 40.80% 
 100 10% 0.163 0.138 9.80% 
 100 20% 0.204 0.174 37.50% 
 500 10% 0.147 0.125 6.50% 
 500 20% 0.186 0.159 34.90% 

GM-BR 50 10% 0.207 0.176 28.30% 
 50 20% 0.285 0.247 76.90% 
 100 10% 0.19 0.162 25.10% 
 100 20% 0.263 0.227 73.20% 
 500 10% 0.172 0.146 18.30% 
 500 20% 0.241 0.208 65.80% 

LTS-BR 50 10% 0.247 0.209 50.60% 
 50 20% 0.399 0.362 143.80% 
 100 10% 0.227 0.193 48.10% 
 100 20% 0.371 0.335 141.50% 
 500 10% 0.205 0.174 36.90% 
 500 20% 0.342 0.308 129.70% 

BR 50 10% 0.418 0.393 172.40% 
 50 20% 0.829 0.807 442.70% 
 100 10% 0.393 0.368 170.10% 
 100 20% 0.797 0.775 439.50% 
 500 10% 0.364 0.339 156.30% 
 500 20% 0.761 0.739 427.20% 

We note from Table (1) that the larger the sample size, the smaller the error (RMSE, 

MAE), and the proposed methods (GM-BR, LTS-BR, GM6-BR) give the lowest error and 

the best resistance, i.e. more accurate and stable against contamination, with (GM6-BR) 

being the most distinguished, showing the lowest error at all levels of sample size (50, 100, 

500) with varying contamination levels (10% or 20%) at accuracy level 𝜑= 5. We note that 
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the (BR) method recorded the highest error even with increasing sample size and 

decreasing contamination level, which indicates its weakness in the face of contamination 

in the data [15]. 

Table (2): compares the deviation between (BR, LTS-BR, GM-BR, GM6-BR) in the 

case of a linear relationship between the variables, 𝜑= 5. 

n Contamination GM6-BR GM-BR LTS-BR BR 

50 10% 0.052 0.087 0.152 0.382 

50 20% 0.109 0.185 0.325 0.785 

100 10% 0.046 0.079 0.140 0.368 

100 20% 0.098 0.168 0.301 0.759 

500 10% 0.041 0.072 0.131 0.351 

500 20% 0.089 0.153 0.281 0.732 

We note from Table (2) that the proposed methods (GM-BR, GM6-BR, LTS-BR) 

recorded lower deviations than the (BR) method. As the sample size increases, errors 

decrease in all models, but the GM6-BR remains the least deviant even when the 

contamination level changes from 10% to 20%, unlike the (BR) method, which recorded 

the highest deviations. This indicates that this method suffers from data contamination. 

 

 
Figure (1):  displays the results of the four estimation methods (BR, LTS-BR, GM-BR, 

GM6-BR) in the case of (linear relationship between variables) and 𝜑= 5. 

 

Figure (1) shows that the proposed methods (GM-BR, LTS-BR, GM6-BR) showed 

lower curves in terms of error (RMSE, MAE), and the classic BR method shows high 

results in terms of error, and with the increase in the sample size the error decreases in all 

methods, but GM6-BR remains the best among the methods. 
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Figure (2): Comparison of deviation between (BR, LTS-BR, GM-BR, GM6-BR) in the 

case of a linear relationship between the variables and 𝜑= 5. 

 

Figure (2) shows that the proposed methods GM6-BR has the lowest deviation in all 

cases, while GM-BR and LTS-BR perform averagely. BR suffers from high deviation, 

which makes it unsuitable for data containing contamination. As the sample size 

increases, the deviation decreases in all methods, but (GM6-BR) has the lowest deviation 

even with an increase in the percentage of contamination. 

 
Figure (3): Deviation (Bias) of the methods for estimating the quartile (BR, LTS-BR, 

GM-BR, GM6-BR) in the case of a linear relationship between the variables and 𝜑= 5 

 

We note from Figure (3), comparing the performance of the estimation methods (BR, 

GM-BR, LTS-BR, GM6-BR) in the case of data contamination by 10% and 20% in terms of 

average bias, we note that the proposed method (GM-BR, LTS-BR, GM6-BR) shows a 

lower average bias than the (BR) method, which indicates the high accuracy of the 

proposed methods in estimation. As for the BR method, it shows a very high average bias, 

which makes it unsuitable in the case of contamination. 

Table (3): Comparison of the performance of four methods for estimation (BR, LTS-

BR, GM-BR, GM6-BR) in the linear relationship between variables and 𝜑= 10 

Method n Contamination Avg _RMSE Avg_ MAE Robustness_Index* 

GM6-BR 50 10% 0.131 0.11 12.80% 
 50 20% 0.167 0.142 43.90% 
 100 10% 0.121 0.102 9.50% 
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 100 20% 0.154 0.131 40.20% 
 500 10% 0.11 0.093 6.80% 
 500 20% 0.142 0.121 37.50% 

GM-BR 50 10% 0.154 0.13 28.60% 
 50 20% 0.218 0.187 81.70% 
 100 10% 0.142 0.12 25.30% 
 100 20% 0.203 0.174 78.40% 
 500 10% 0.131 0.111 18.90% 
 500 20% 0.191 0.163 73.20% 

LTS-BR 50 10% 0.185 0.156 54.20% 
 50 20% 0.308 0.279 157.30% 
 100 10% 0.17 0.144 50.30% 
 100 20% 0.288 0.259 154.10% 
 500 10% 0.156 0.132 38.70% 
 500 20% 0.271 0.243 140.80% 

BR 50 10% 0.331 0.312 180.50% 
 50 20% 0.653 0.639 449.30% 
 100 10% 0.315 0.296 178.20% 
 100 20% 0.628 0.614 446.10% 
 500 10% 0.298 0.279 165.90% 
 500 20% 0.602 0.588 432.70% 

 

We note from Table (3) that the larger the sample size, the smaller the error (RMSE, 

MAE), and the proposed methods (GM-BR, LTS-BR, GM6-BR) give the lowest error and 

the best resistance, i.e. more accurate and stable against contamination, with (GM6-BR) 

being the most distinguished, showing the lowest error at all levels of sample size (50, 100, 

500) with varying contamination levels (10% or 20%) at accuracy level 𝜑= 10. We note that 

the (BR) method recorded the highest error even with increasing sample size and 

decreasing contamination level, which indicates its weakness in the face of contamination 

in the data [16], [17]. 

 

Table (4): Comparison of deviation between four methods of estimation (BR, LTS-

BR, GM-BR, GM6-BR) in the case of a linear relationship between variables, 𝜑= 10 

n Contamination GM6-BR GM-BR LTS-BR BR 

50 10% 0.043 0.072 0.125 0.302 

50 20% 0.091 0.153 0.268 0.624 

100 10% 0.038 0.065 0.115 0.291 

100 20% 0.082 0.141 0.253 0.602 

500 10% 0.034 0.059 0.108 0.283 

500 20% 0.076 0.132 0.231 0.588 

 

We note from Table (4) that the proposed methods (GM-BR, GM6-BR, LTS-BR) 

recorded lower deviations than the (BR) method. As the sample size increases, errors 

decrease in all models, but GM6-BR remains the least deviant even with the change in the 

contamination level from 10% to 20%, unlike the (BR) method, which recorded the highest 

deviations. This indicates that this method suffers from data contamination despite 

raising the accuracy level to φ= 10. 
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Figure (4): displays the results of the four estimation methods (BR, LTS-BR, GM-BR, 

GM6-BR) in the case of (linear relationship between variables) and 𝜑= 10 

 

Figure (4) shows that the proposed methods (GM-BR, LTS-BR, GM6-BR) showed 

lower curves in terms of error (RMSE, MAE), and the classic BR method shows high 

results in terms of error. With increasing the sample size and raising the accuracy level to 

φ= 10, the error decreases in all methods, but GM6-BR remains the best among the 

methods. 

 

 
Figure (5): Comparison of deviation between (BR, LTS-BR, GM-BR, GM6-BR) in the 

case of a linear relationship between the variables and 𝜑= 10. 

 

Figure (5) shows that the proposed GM6-BR method has the lowest deviation in all 

cases, while GM-BR and LTS-BR perform at average levels. BR suffers from high deviation 

despite increasing the accuracy level to (𝜑= 10. ), making it unsuitable for data containing 

contamination. As the sample size increases, the deviation decreases for all methods, but 

GM6-BR has the lowest deviation even with increasing contamination. 
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Figure (6): Deviation (Bias) of the methods for estimating the quartile (BR, LTS-BR, GM-

BR, GM6-BR) in the case of a linear relationship between the variables and 𝜑= 10 

 

We note from Figure (6), comparing the performance of the estimation methods (BR, 

GM-BR, LTS-BR, GM6-BR) in the case of data contamination at 10% and 20% in terms of 

average bias, we note that the proposed method (GM-BR, LTS-BR, GM6-BR) shows a 

lower average bias than the (BR) method, which indicates the high accuracy of the 

proposed methods in estimation [18]. As for the BR method, it shows a very high average 

bias even with raising the accuracy level to (𝜑= 10) and increasing the sample size, which 

makes it unsuitable in the case of contamination. 

 

Table (5): Comparison of the performance of four estimation methods (BR, LTS-BR, GM-

BR, GM6-BR) in the case of a non-linear relationship between variables and 𝜑= 5. 

Method n Contamination Avg_ RMSE Avg_ MAE Robustness _Index 

GM6-BR 50 10% 0.214 0.182 15.70% 

  50 20% 0.263 0.227 42.30% 

  100 10% 0.192 0.164 11.20% 

  100 20% 0.239 0.206 38.60% 

  500 10% 0.171 0.146 8.10% 

  500 20% 0.217 0.187 36.90% 

GM-BR 50 10% 0.253 0.217 31.50% 

  50 20% 0.342 0.299 77.80% 

  100 10% 0.229 0.196 28.70% 

  100 20% 0.314 0.274 76.10% 

  500 10% 0.204 0.175 21.40% 

  500 20% 0.291 0.253 73.20% 

LTS-BR 50 10% 0.298 0.254 54.90% 

  50 20% 0.467 0.423 142.80% 

  100 10% 0.271 0.232 52.10% 

  100 20% 0.438 0.396 145.60% 

  500 10% 0.243 0.208 40.30% 

  500 20% 0.412 0.372 138.90% 

BR 50 10% 0.487 0.458 178.30% 

  50 20% 0.914 0.889 446.10% 

  100 10% 0.459 0.431 181.50% 

  100 20% 0.883 0.859 449.70% 

  500 10% 0.428 0.401 169.80% 
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  500 20% 0.857 0.834 442.30% 

We note from Table (5) that the data are non-linear, the larger the sample size the 

smaller the error (RMSE, MAE), and the proposed methods (GM-BR, LTS-BR, GM6-BR) 

give the least error and the best resistance, i.e. more accurate and stable against 

contamination, with (GM6-BR) being the most distinguished, showing the least error at 

all levels of sample size (50, 100, 500) with varying contamination level (10% or 20%) at 

accuracy level 𝜑= 5. We note that the (BR) method recorded the highest error even with 

increasing sample size and decreasing contamination level, which indicates its weakness 

in the face of contamination in the data. 

Table (6): Comparison of deviation between four methods of estimation (BR, LTS-

BR, GM-BR, GM6-BR), in the case of a non-linear relationship between variables, 𝜑= 5. 

n Contamination GM6-BR GM-BR LTS-BR BR 

50 10% 0.068 0.112 0.187 0.458 

50 20% 0.134 0.231 0.392 0.889 

100 10% 0.059 0.098 0.173 0.431 

100 20% 0.121 0.215 0.378 0.859 

500 10% 0.052 0.089 0.162 0.401 

500 20% 0.113 0.203 0.361 0.834 

 

We note from Table (6) that the proposed methods (GM-BR, GM6-BR, LTS-BR) 

recorded lower deviations than the (BR) method even with non-linear data. As the sample 

size increases, errors decrease in all models, but GM6-BR remains the least deviant even 

with the change in the contamination level from 10% to 20%, unlike the (BR) method, 

which recorded the highest deviations, which indicates the suffering of this method when 

the data is contaminated. 

 
Figure (7): shows the results of the four estimation methods (BR, LTS-BR, GM-BR, 

GM6-BR) in the case of a non-linear relationship between the variables and 𝜑= 5. 

 

Figure (7) shows that the proposed methods (GM-BR, LTS-BR, GM6-BR) showed 

lower error curves (RMSE, MAE) with non-linear data, and the classic BR method shows 

high results in terms of error, and with the increase in the sample size, the error decreases 

in all methods, but GM6-BR remains the best among the methods 
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Figure (8): Comparison of the deviation (Bias) between (BR, LTS-BR, GM-BR, GM6-BR) 

in the case of a linear relationship between the variables and 𝜑= 5. 

Figure (8) shows that the proposed methods GM6-BR has the lowest deviation in all cases, 

while GM-BR and LTS-BR perform averagely. BR suffers from high deviation, which 

makes it unsuitable for nonlinear data containing contamination [19], [20]. As the sample 

size increases, the deviation decreases in all methods, but (GM6-BR) has the lowest 

deviation even with increasing contamination. 

 
Figure (9): Deviation (bias) of the four estimation methods (BR, LTS-BR, GM-BR, GM6-

BR) in the case of a nonlinear relationship between the variables and 𝜑= 5. 

We note from Figure (9), comparing the performance of the estimation methods (BR, 

GM-BR, LTS-BR, GM6-BR) in the case of data contamination by 10% and 20% in terms of 

average bias in non-linear data, we note that the proposed method (GM-BR, LTS-BR, 

GM6-BR) shows a lower average bias than the (BR) method, which indicates the high 

accuracy of the proposed methods in estimation. As for the BR method, it shows a very 

high average bias even with an increase in the sample size, which makes it unsuitable in 

the case of contamination [21]. 

Table (7) : Comparison of the performance of four estimation methods (BR, LTS-BR, 

GM-BR, GM6-BR) in the case of a non-linear relationship between variables and 𝜑= 

10 

Method n Contamination Avg_ RMSE Avg _MAE Robustness _Index 

GM6-BR 50 10% 0.162 0.138 14.10% 
 50 20% 0.203 0.175 42.90% 
 100 10% 0.148 0.126 10.40% 
 100 20% 0.187 0.161 39.60% 
 500 10% 0.134 0.115 7.20% 
 500 20% 0.171 0.148 36.80% 

GM-BR 50 10% 0.191 0.163 30.10% 
 50 20% 0.264 0.229 79.50% 
 100 10% 0.174 0.149 27.30% 
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 100 20% 0.243 0.211 77.80% 
 500 10% 0.158 0.135 20.20% 
 500 20% 0.227 0.197 72.40% 

LTS-BR 50 10% 0.228 0.195 53.70% 
 50 20% 0.371 0.334 149.80% 
 100 10% 0.209 0.179 51.20% 
 100 20% 0.352 0.317 154.30% 
 500 10% 0.19 0.163 39.70% 
 500 20% 0.331 0.298 143.20% 

BR 50 10% 0.372 0.348 181.20% 
 50 20% 0.719 0.701 451.30% 
 100 10% 0.354 0.331 183.70% 
 100 20% 0.703 0.686 457.10% 
 500 10% 0.333 0.311 172.50% 
 500 20% 0.691 0.674 449.80% 

 

We note from Table (7) that the data are non-linear, the larger the sample size the 

smaller the error (RMSE, MAE), and the proposed methods (GM-BR, LTS-BR, GM6-BR) 

give the least error and the best resistance, i.e. more accurate and stable against 

contamination, with (GM6-BR) being the most distinguished, showing the least error at 

all levels of sample size (50, 100, 500) with varying contamination level (10% or 20%) at 

accuracy level 𝜑= 10. We note that the (BR) method recorded the highest error even with 

increasing sample size and decreasing contamination level, which indicates its weakness 

in the face of contamination in the data. 

Table (8) : Comparison of deviation between four methods of estimation (BR, LTS-

BR, GM-BR, GM6-BR), in the case of a non-linear relationship between variables, 𝜑= 10. 

n Contamination GM6-BR GM-BR LTS-BR BR 

50 10% 0.061 0.098 0.172 0.348 

50 20% 0.127 0.215 0.376 0.701 

100 10% 0.053 0.087 0.158 0.331 

100 20% 0.115 0.201 0.362 0.686 

500 10% 0.047 0.079 0.147 0.311 

500 20% 0.108 0.192 0.347 0.674 

 
We note from Table (8) that the proposed methods (GM-BR, GM6-BR, LTS-BR) 

recorded lower deviations than the (BR) method even with non-linear data. As the sample 

size increases and the accuracy level is raised to φ= 10, errors decrease in all models, but 

GM6-BR remains the least deviant even with the pollution level changing from 10% to 

20%, unlike the (BR) method, which recorded the highest deviations, which indicates the 

suffering of this method when the data is polluted. 
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Figure (10): shows the results of the four estimation methods (BR, LTS-BR, GM-BR, 

GM6-BR) in the case of (nonlinear relationship between variables) and 𝜑= 10. 

Figure (10) shows that the proposed methods (GM-BR, LTS-BR, GM6-BR) showed 

lower error curves (RMSE, MAE) with non-linear data, and the classic BR method shows 

high results in terms of error, and with increasing the sample size and raising the accuracy 

level to φ= 10, the error decreases in all methods, but GM6-BR remains the best among the 

methods. 

 
Figure (11) :Comparison of the deviation (Bias) between (BR, LTS-BR, GM-BR, GM6-

BR) in the case of a linear relationship between the variables and 𝜑= 10 

Figure (11) shows that the proposed methods GM6-BR has the lowest deviation in all 

cases, while GM-BR and LTS-BR perform averagely. BR suffers from high deviation 

despite raising the accuracy level to (𝜑= 10), which makes it unsuitable for nonlinear data 

containing contamination. As the sample size increases, the deviation decreases in all 

methods, but (GM6-BR) has the lowest deviation even with an increase in the percentage 

of contamination. 
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Figure (12): Deviation (bias) of the four estimation methods (BR, LTS-BR, GM-BR, 

GM6-BR) in the case of a nonlinear relationship between the variables and 𝜑= 10 

We note from Figure (12), the comparison of the performance of the estimation 

methods (BR, GM-BR, LTS-BR, GM6-BR) in the case of data contamination by 10% and 

20% in terms of average bias in non-linear data, we note that the proposed method (GM-

BR, LTS-BR, GM6-BR) shows a lower average bias than the (BR) method, which indicates 

the high accuracy of the proposed methods in estimation. As for the BR method, it shows 

a very high average bias even with raising the accuracy level to (𝜑= 10) and increasing the 

sample size, which makes it unsuitable in the case of contamination. 

 

Table (9) ;Comparison of the results of the parameters before and after 

contamination of the real data. 

Method Parameter 
Clean 

Estimate 

Contaminated 

Estimate 
Difference Pct_ Change 

BR Intercept 1.215 1.842 0.627 51.60% 

  gravity 0.043 0.128 0.085 197.70% 

  pressure -0.012 -0.045 -0.033 275.00% 

GM-BR Intercept 1.185 1.324 0.139 11.70% 

  gravity 0.039 0.052 0.013 33.30% 

  pressure -0.011 -0.018 -0.007 63.60% 

GM6-BR Intercept 1.173 1.285 0.112 9.50% 

  gravity 0.037 0.046 0.009 24.30% 

  pressure -0.01 -0.015 -0.005 50.00% 

LTS-BR Intercept 1.163 1.201 0.038 3.30% 

  gravity 0.035 0.038 0.003 8.60% 

  pressure -0.01 -0.011 -0.001 10.00% 

 
Table (9) shows a comparison between the four methods before and after data 

contamination for three factors. We note that the (GM6-BR and LTS-BR) methods showed 

the least change between the clean data and the data after contamination, indicating high 

stability and greater stability, while the BR method showed a sharp change, indicating its 

weakness compared to the contaminated data. 

. 

Table (10): Comparison of RMSE, MAE before and after contamination of real data. 

Method RMSE-Clean RMSE- Contam. MAE-Clean MAE- Contam. 

BR 0.084 0.142 0.065 0.118 

GM-BR 0.077 0.089 0.058 0.067 
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GM6-BR       0.067         0.073      0.051         0.055 

LTS-BR 0.073 0.076 0.055 0.057 

 

We note from Table (10) a comparison of RMSE and MAE before and after 

contamination of real data. The proposed method (GM6-BR) has the least error with a 

slight difference from the proposed method (LTS-BR) followed by the proposed method 

(GM-BR). We note that the BR method suffers from a large change in errors after 

contamination. The actual results confirm what the experimental analyses showed that 

the proposed methods are the best with a relative advantage over the method (GM6-BR). 

 

 
Figure (13): Represents the scientific verification of the effect of the four methods on a 

real data set, by comparing the values before and after pollution. 

Figure (13) shows a comparison between the estimation methods (BR, GM-BR, LTS-

BR, GM6BR) in terms of error (RMSE and MAE) before and after contamination of the 

data, with the same sample sizes. We note that the proposed methods (GM-BR, LTS-BR, 

GM6BR) recorded the lowest error at a contamination rate of 10%, and also when the 

contamination rate increased to 20%, compared to the (BR) method, which recorded the 

highest error rate of the proposed methods. This indicates the superiority of the proposed 

methods, not only in simulations, but also with real data. BR showed a significant increase 

in error, indicating that it cannot be relied upon in the presence of outliers. 

5. Conclusion 

The traditional beta regression (BR) model is affected by outliers or high leverage 

points, leading to significant bias in estimates and increased error indices such as RMSE 

and MAE. Robust estimators such as GM-BR and LTS-BR demonstrated better 

performance than the      traditional method, but they remain less efficient than the GM6-

BR estimator on contaminated data. The GM6-BR estimator demonstrated clear 

superiority in all experiments, achieving the lowest mean deviation (Bias), lowest error 

(RMSE, MAE), and the highest degree of stability, reaching 20%. Increasing the sample 

size (n) reduces the influence of outliers in all methods, but the GM6-BR method was the 

fastest in terms of accuracy and stability. Increasing the precision coefficient (𝜑 ) 

contributed to reducing the variance in estimates and improving the results, but it did not 

address the weakness of the traditional BR method's resistance to outliers. In the case of a 

non-linear regression (as in the second example), we observe a significant decline in the 

performance of BR, while GM6-BR maintains its accuracy. The practical application 

proves that the GM6-BR estimator is the most efficient. The multistage algorithm (GM6) 

has been proven effective in identifying and reducing the influence of high leverage points 

on the independent variables, using a recursive and supported method, Robust 

Mahalanobis Distance. 
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