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Abstract: This paper presents a Bayesian Adaptive Lasso approach for variable selection in Beta 

regression models. The method improves classical Beta regression by incorporating coefficient-

specific shrinkage through adaptive penalty weights. A hierarchical prior structure is adopted to 

allow flexible shrinkage, enabling the model to effectively eliminate irrelevant  predictors while 

retaining important ones. A simulation study under various sparsity and precision conditions is 

conducted to assess the model’s performance in terms of estimation accuracy, bias, and selection 

ability. The proposed Bayesian Adaptive Lasso Beta Regression (BALBR) model is evaluated against 

standard BR, Bayesian BR, and Bayesian Lasso BR models. Results demonstrate that BALBR 

provides superior variable selection and estimation efficiency. An application to a real-world 

dataset further confirms the practical effectiveness of the proposed methodology. 
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1. Introduction 

Variable selection is a critical component of modern statistical modeling, particularly 

in high-dimensional settings where the number of explanatory variables may be large 

relative to, or even exceed, the sample size. Its primary objective is to identify a 

parsimonious subset of covariates that significantly contribute to the variability of the 

response variable, while eliminating redundant or non-informative predictors [1], [2]. 

This process improves predictive performance, reduces model complexity, enhances 

interpretability, and mitigates overfitting. The relevance of variable selection has grown 

significantly with the rise of data-intensive applications across various disciplines, 

including genomics, finance, environmental science, and machine learning. These 

domains often involve complex dependencies among predictors and heterogeneous 

signal structures, necessitating selection methods that are computationally efficient, 

statistically robust, and scalable [3]. 

Among the most influential approaches is the Lasso (Least Absolute Shrinkage and 

Selection Operator), which facilitates simultaneous parameter estimation and variable 

selection by imposing an ℓ₁-penalty on the regression coefficients. While the Lasso is well-

suited for promoting sparsity, it suffers from notable limitations, such as the biased 

shrinkage of large coefficients and inconsistent selection among groups of highly 

correlated variables [4]. To address these issues, the Adaptive Lasso was introduced, 

incorporating variable-specific penalty weights to improve both accuracy and consistency 

in selection. These ideas have naturally extended into the Bayesian paradigm, which offers 

a flexible framework for uncertainty quantification, hierarchical modeling, and prior 

specification. For example, the Bayesian Lasso  utilizes Laplace priors to encourage 
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sparsity, but its reliance on a global shrinkage parameter limits its adaptability in 

heterogeneous data contexts. 

The Bayesian Adaptive Lasso improves upon this by employing a hierarchical prior 

structure with local shrinkage parameters, enabling differential penalization across 

regression coefficients. This formulation enhances model performance in sparse, noisy, or 

highly collinear environments by allowing the degree of shrinkage to adapt to the 

characteristics of each covariate [5], [6]. Concurrently, an important class of models has 

emerged for analyzing continuous response variables restricted to the (0,1) interval, such 

as rates and proportions called Beta regression. The Beta regression model  provides a 

natural modeling framework for such data, parameterizing the distribution in terms of a 

mean linked to covariates via a link function and a precision parameter, which governs 

the dispersion around the mean. This dual-parameter structure enables Beta regression to 

accommodate heteroskedasticity and varying response uncertainty [7]. 

Despite its flexibility, Beta regression becomes increasingly challenging in high-

dimensional applications, particularly due to issues of overparameterization and 

multicollinearity. As a result, there has been growing interest in integrating regularization 

techniques into the Beta regression framework. However, the application of classical 

Lasso in this context is not straightforward, owing to the non-Gaussian and nonlinear 

structure of the Beta likelihood [8]. This has prompted the development of Bayesian 

shrinkage methods specifically tailored to Beta regression models. 

A particularly effective innovation is the Bayesian Adaptive Lasso for Beta 

Regression, which synthesizes the strengths of the Beta distribution with the adaptive, 

coefficient-specific regularization provided by the Bayesian Adaptive Lasso. In this 

hierarchical model, each regression coefficient is assigned a Gaussian prior, whose 

variance is governed by an exponential-gamma hierarchical structure [9]. This 

configuration enables flexible, localized shrinkage, allowing the model to effectively 

distinguish between relevant and irrelevant covariates, accurately estimate the precision 

parameter, and provide comprehensive posterior inference. 

2. Beta Regression 

Beta regression is a specialized modeling approach tailored for response variables that 

represent proportions or percentages constrained within the open interval (0, 1). This type 

of regression is particularly appropriate when the response exhibits both boundedness 

and heteroskedasticity, conditions under which conventional linear regression fails to 

perform adequately [10]. 

The foundation of beta regression lies in the beta distribution, which can be 

parameterized in terms of its shape parameters,  𝑝 and 𝑞, with the probability density 

function given by: 

𝑓(𝑦; 𝑝, 𝑞) =
𝛤(𝑝 + 𝑞)

𝛤(𝑝)𝛤(𝑞)
𝑦𝑝−1(1 − 𝑦)𝑞−1  ,   0 < 𝑦 < 1 … … (2) 

 

In regression contexts, however, it is more practical to express the distribution in 

terms of the mean and a precision parameter. Accordingly, the beta distribution is 

reparameterized by defining: 

      Let: 𝜇 = 𝑝/(𝑝 + 𝑞) and 𝛾 = (𝑝 + 𝑞) which 𝑝 = 𝜇𝛾 and 𝑞 = (1 − 𝜇)𝛾. 

 

Under this reparameterization, the mean and variance of the response variable y are: 

                                                            𝐸(𝑦) = 𝜇       𝑣𝑎𝑟(𝑦) = 
𝑣(𝜇)

1+𝛾
 

𝑉(𝜇) = 𝜇(1 − 𝜇) 
Here, 0 < 𝜇 < 1 denotes the mean of the response variable, while 𝛾>0 the precision 

parameter. Higher values of 𝛾 imply a smaller variance, indicating that observations are 

more tightly concentrated around the mean. 

The corresponding density function of the reparametrized beta distribution becomes: 

𝑓(𝑦; 𝜇, 𝛾) =
𝛤(𝛾)

𝛤(𝜇𝛾)𝛤((1 − 𝜇)𝛾)
𝑦𝜇𝛾−1(1 − 𝑦)(1−𝜇)𝛾−1  , 0 < 𝑦 < 1 … . . (3) 

This reparameterization enables the construction of a flexible regression framework 

wherein both the mean μ and the precision γ can be modeled, enhancing the model's 

ability to capture complex patterns of variability in bounded data. 
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3. Penalized Regression and Adaptive Lasso Shrinkage 

Among the most effective approaches for variable selection are penalized regression 

techniques, which introduce regularization terms into the objective function to control 

model complexity and induce shrinkage. One of the most widely adopted methods is the 

Lasso (Least Absolute Shrinkage and Selection Operator), introduced by Tibshirani [11]. 

Lasso applies an 𝑙1-norm penalty that shrinks some coefficients exactly to zero, thereby 

enabling simultaneous estimation and variable selection: 

�̂� = arg  min
             𝛽

 {∑(𝑦𝑖 − 𝜇(𝑋𝑖𝛽))2   + 𝜆 ∑|𝛽𝑗|}   

𝑝

𝑗=1

𝑛

𝑖=1

… (1) 

Despite its popularity, the Lasso has certain limitations, including biased estimates 

for large coefficients and difficulty in selecting among highly correlated variables. To 

address these shortcomings, Zou proposed the Adaptive Lasso, which assigns adaptive 

weights to each coefficient in the penalty term: 

�̂� = min
𝛽

(∑(𝑦𝑖 − 𝜇(𝑋𝑖𝛽))2)   + 𝜆 ∑ w𝑗|𝛽𝑗| ,

𝑝

𝑗=1

𝑛

𝑖=1

 

where the weights are defined as  w𝑗 = 
1

∣�̂�𝑗
𝑖𝑛𝑖𝑡∣𝛾

 , and    �̂�𝑗
𝑖𝑛𝑖𝑡 , is an initial estimate of the 

coefficient and γ > 0, is a tuning parameter. 

The Adaptive Lasso satisfies the oracle property, meaning it can correctly identify the 

true model with high probability and yields consistent variable selection along with 

nearly unbiased coefficient estimation as the sample size increases. 

2. Materials and Methods 

4. Bayesian Adaptive Lasso for Beta Regression 

The statistical modeling of continuous data bounded within the open interval (0,1), such 

as proportions and rates, necessitates a distribution that respects these boundaries. Beta 

regression models provide a natural framework for such data. In this section, we introduce a 

Bayesian Beta Regression (BBR) framework that extends the classical Beta regression by 

incorporating prior distributions over model parameters, enabling probabilistic inference. 

Let  𝑦𝑖~𝐵𝑒𝑡𝑎(𝜇𝑖, 𝛾), for   𝑖 = 1, … , 𝑛 where  𝜇𝑖 ∈ (0,1) denotes the mean of the Beta 

distribution, 𝛾 is the precision parameter, and 𝑥𝑖 ∈ 𝑅𝑝 , 𝑥𝑖 is a vector of covariates. The mean 

𝜇𝑖 is linked to the covariates through a link function g(⋅), commonly the logit function: 
𝑔(𝜇𝑖) = 𝒙𝑖

′𝜷       ,      𝑖 = 1, … , 𝑛 

 

𝜇𝑖 =
е𝒙𝑖

′𝜷

1 + е𝒙𝑖
′ 𝜷

 

 

where 𝜷 = (𝛽1, … , 𝛽𝑝)′ is a vector of unknown regression coefficients. 

The likelihood function for the observed data is then given by: 

𝑙(𝑦|𝛽, 𝛾, 𝝁) = ∏
𝛤(𝛾)

𝛤(𝜇𝑖𝛾)𝛤((1 − 𝜇𝑖)𝛾)
𝑦𝑖

𝜇𝑖𝛾−1 
(1 − 𝑦𝑖)(1−𝜇𝑖)𝛾−1  … (4)

𝑛

𝑖=1

 

 

To induce sparsity in the regression coefficients and perform variable selection, we adopt 

the Bayesian Adaptive Lasso (BAL) prior, which assigns a Laplace (double-exponential) 

distribution to each βj    with coefficient-specific shrinkage: 

                                                    𝜋(𝛽𝑗|𝜆𝑗 , 𝜎) =
𝜆𝑗

2𝜎
𝑒

{−
𝜆𝑗|𝛽𝑗|

𝜎
}

  , 𝜆𝑗 > 0        … (5) 

  

 

This Laplace prior can be represented as a scale mixture of normals, allowing for 

computational tractability in the Gibbs sampler. Using the representation from, the Laplace 

density can be expressed hierarchically as: 
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𝜃

2
𝑒−𝜃|𝑧| = ∫

1

√2𝜋𝑠
exp {−

𝑧2

2𝑠
} 

𝜃𝑗
2

2

∞

0

exp {−
𝜃𝑗

2𝑠

2
} 𝑑𝑠 … (6) 

Where 𝜃𝑗 =
𝜆𝑗

𝜎
 . Consequently, the prior on β becomes: 

 

∏
𝜃𝑗

2
𝑒−𝜃𝑗|𝛽𝑗|

𝑝

𝑗=1

= ∏ ∫
1

√2𝜋𝑠𝑗

exp {−
𝛽𝑗

2 

2𝑠𝑗

} 
𝜃𝑗

2 

  

2

∞

0

exp {−
𝜃𝑗

2𝑠𝑗

2
} 𝑑𝑠𝑗

𝑝

𝑗=1

         

Then we can rewrite the mixture function above as : 

 

= ∏ ∫
1

√2𝜋𝑠𝑗

exp {−
𝛽𝑗

2 

2𝑠𝑗

} 
𝜆𝑗

2 

  

2𝜎2

∞

0

exp {−
𝜆𝑗

2𝑠𝑗

2𝜎2
} 𝑑𝑠𝑗

𝑝

𝑗=1

 

In this study, we assign a Gamma prior to the precision parameter γ, and an independent 

Gamma prior to each 𝜆𝑗
2 to allow adaptive shrinkage where  inverse gamma set as prior for   

𝜎2: 

𝛾~ 𝐺𝑎𝑚𝑚𝑎(𝑎1, 𝑏1),   𝜆𝑗
2~ 𝐺𝑎𝑚𝑚𝑎(𝑎2, 𝑏2)  . 𝜎2~𝐼𝑛𝑣𝑒𝑟𝑠𝑒 𝐺𝑎𝑚𝑚𝑎(𝑎3, 𝑏3). 

Thus, the full hierarchical Bayesian model is specified by the following components: 

• Likelihood: 

𝑙(𝑦|𝛽, 𝛾, 𝝁) = ∏
𝛤(𝛾)

𝛤(𝜇𝑖𝛾)𝛤((1 − 𝜇𝑖)𝛾)
𝑦𝑖

𝜇𝑖𝛾−1 
(1 − 𝑦𝑖)(1−𝜇𝑖)𝛾−1  …

𝑛

𝑖=1

 

 

• Prior on coefficients (via normal-exponential mixture): 

(𝜷, 𝑠|𝜆𝑗
2, 𝜎2) = ∏ ∫

1

√2𝜋𝑠𝑗

exp {−
𝛽𝑗

2 

2𝑠𝑗

}   
𝜆𝑗

2 

  

2𝜎2

∞

0

exp {−
𝜆𝑗

2𝑠𝑗

2𝜎2
} 𝑑𝑠𝑗

𝑝

𝑗=1

  … (7) 

                                         
   

• Priors on hyperparameters: 

𝛾~ 𝐺𝑎𝑚𝑚𝑎(𝑎1, 𝑏1), 

𝜆𝑗
2~ 𝐺𝑎𝑚𝑚𝑎(𝑎2, 𝑏2) 

 𝜎2~𝐼𝑛𝑣𝑒𝑟𝑠𝑒 𝐺𝑎𝑚𝑚𝑎(𝑎3, 𝑏3) 
 

This hierarchical Bayesian framework facilitates posterior inference through MCMC 

sampling, with component-wise updates of 𝜷, 𝒔, 𝜆𝑗
2, 𝜎2 and 𝛾. The inclusion of variable-

specific shrinkage parameters λj  allows for adaptive penalization, leading to more flexible 

and interpretable model estimation. 

5. The Conditional Posterior Distributions: 

Based on the hierarchical model (7), the posterior distribution for Bayesian variable 

selection in beta regression can be constructed as follows: 

 

1- Sample the coefficients 𝜷|𝑦, 𝑠, 𝛾, from the full conditional posterior distribution of 𝛽 :  

 
𝜋(𝛽|𝑦, 𝑠, 𝛾, 𝜃2) ∝ 𝜋(𝑦 |𝛽, 𝑠, 𝛾, 𝜃2) × 𝜋(𝛽|𝑠) 

 

∝ ∏
𝛤(𝛾)

𝛤(𝜇𝑖𝛾)𝛤((1 − 𝜇𝑖)𝛾)
𝑦𝑖

𝜇𝑖𝛾−1 
(1 − 𝑦𝑖)(1−𝜇𝑖)𝛾−1 × ∏ exp {−

𝛽𝑗
2 

2𝑠𝑗

}

𝑝

𝑗=1

 

𝑛

𝑖=1

 

 

Since the distribution is not common, the Metropolis algorithm will be used to sample 𝛽. 

 

2- Sample    𝑠|𝛽, 𝑦, 𝛾, 𝜃2 from the following  full conditional posterior distribution of 𝒔: 

 

𝜋(𝑠|𝛽, 𝑦, 𝛾, 𝜃2
𝑗) ∝ 𝜋(𝛽|𝑠) × 𝜋(𝑠|𝜆𝑗

2, 𝜎2) 
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∝
1

√2𝜋𝑠𝑗

exp {−
𝛽𝑗

2 

2𝑠𝑗

} × exp {−
𝜆𝑗

2

2𝜎2
 𝑠𝑗} 

 

∝
1

√𝑠𝑗

exp {−
1

2
( 𝛽𝑗

2𝑠𝑗
−1 +

𝜆𝑗
2

𝜎2
 𝑠𝑗)}  

The full conditional posterior distribution of 𝒔 is generalized inverse Gaussian 

distribution. 

 

3- Sample    𝛾|𝛽, 𝑦, 𝑠, 𝜃2 from the following  full conditional posterior distribution of 𝛾: 

 
𝜋(𝛾|𝛽, 𝑦, 𝑠, 𝜃2) ∝ 𝜋(𝑦  |𝛽, 𝑠, 𝛾, 𝜃2) × 𝜋(𝛾) 

 

∝ ∏
𝛤(𝛾)

𝛤(𝜇𝑖𝛾)𝛤((1 − 𝜇𝑖)𝛾)
𝑦𝑖

𝜇𝑖𝛾−1 
(1 − 𝑦𝑖)(1−𝜇𝑖)𝛾−1  

𝑛

𝑖=1

× 𝛾𝑎1−1exp (−𝑏1𝛾) 

 

Since the distribution is uncommon, the Metropolis algorithm will be used to sample 𝛾. 

 

4- Sample    𝜆𝑗
2 

|𝛽, 𝑦, 𝑠, 𝛾  from the following  full conditional posterior distribution of: 

 

𝜋(𝜆𝑗
2 

|𝛽, 𝑦, 𝛾, 𝑠) ∝ 𝜋(𝑠|𝜆𝑗
2, 𝜎2)  ×⋅ 𝜋(𝜆𝑗

2 
) 

∝
𝜆𝑗

2 

  

2𝜎2
exp {−

𝜆𝑗
2𝑠𝑗

2𝜎2
} × (𝜆𝑗

2)
𝑎2−1

exp{−𝑏2𝜆𝑗
2} 

The conditional distribution for 𝜆𝑗
2  is Gamma (𝑎2 + 1,

𝑠𝑗

2𝜎2 + 𝑏2) .  

5- Sample   𝜎2  |𝛽, 𝑦, 𝑠, 𝛾, 𝜆𝑗
2  from the following  full conditional posterior distribution of  

𝜎2: 

 

𝜋(𝜎2  |𝛽, 𝑦, 𝑠, 𝛾, 𝜆𝑗
2) ∝ 𝜋(𝑠|𝜆𝑗

2, 𝜎2)  × 𝜋(𝜎2 
) 

∝
𝜆𝑗

2 

  

2𝜎2
exp {−

𝜆𝑗
2𝑠𝑗

2𝜎2
} × (𝜆𝑗

2)
𝑎2−1

× (𝜎2)−𝑎3−1 exp {−
𝑏3

𝜎2
} 

The conditional distribution for 𝜎2   is Inverse Gamma (𝑎3 + 1,
𝜆𝑗

2𝑠𝑗

2 
+ 𝑏3) .  

3. Result  

6. Simulation Study 

To evaluate and compare the performance of four regression methods Beta Regression 

(BR), Bayesian Beta Regression (BBR), Bayesian Lasso Beta Regression (BLBR), and the 

proposed Bayesian Adaptive Lasso Beta Regression (BALBR) a comprehensive simulation 

study is conducted. The response variable  𝑦  is assumed to follow a Beta distribution, 

𝑦𝑖~𝐵𝑒𝑡𝑎(𝜇𝑖𝛾, (1 − 𝜇𝑖)𝛾), where the mean 𝜇𝑖  is linked to the predictors via a logit link 

function as 𝜇𝑖 = 𝑙𝑜𝑔𝑖𝑡−1(𝑥𝑖
′𝛽). The dispersion of the Beta distribution is governed by the 

precision parameter 𝛾, which controls the variance independently of the mean. 

To examine the performance under various settings, three sample sizes are 

considered: small (n=30), moderate (n=100), and large (n=500). Additionally, two values of 

the precision parameter are examined: 𝛾=5 and 𝛾=10, corresponding to moderate and low 

variability, respectively. Each simulation scenario is replicated 200 times, and all Bayesian 

models are fitted using 10,000 MCMC iterations to ensure convergence and stable 

posterior summaries [12], [13]. 
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The performance of the proposed and competing methods is evaluated using several 

key criteria. Estimation accuracy is assessed by computing the Mean Squared Error (MSE) 

of the estimated regression coefficients and the Mean Absolute Error (MAE) of the 

predicted mean responses. To evaluate model fit, we report the log-likelihood, Akaike 

Information Criterion (AIC), and Bayesian Information Criterion (BIC). The 

computational efficiency of each method is measured by the average runtime in seconds 

[14], [15]. Furthermore, the bias and standard deviation (SD) of the estimated regression 

coefficients are examined to assess the precision and stability of the parameter estimates. 

In our simulation  scenario, a sparse model structure is assumed with p=10 predictors, 

where only the first three coefficients are non-zero. The true coefficient vector is specified 

as 𝜷 = (1.5, −1.5,1,0, … ,0). The predictors 𝑥𝑖 are generated from a multivariate normal 

distribution with moderate correlation, defined by the covariance structure  Σ𝑖𝑗 = 0.5|𝑖−𝑗|. 

This example is designed to evaluate the ability of each method, particularly the penalized 

ones, to accurately recover sparse signals in the presence of collinearity among covariates. 

Table 1. Comparative Performance Metrics (MSE, MAE, Log-Likelihood, AIC, BIC, 

and Runtime in Seconds) for BR, BBR, BLBR, and BALBR Models under Sample Size N = 

30 with Two Precision Levels (γ = 5 and γ = 10) 

 Metric BR BBR BLBR BALBR 

𝛾 =5 Model MSE 0.148 0.142 0.121 0.112 

 Model MAE 0.285 0.276 0.252 0.238 

 Log-Likelihood 42.100 43.500 45.200 46.800 

 AIC -68.200 -71.000 -74.400 -77.600 

 BIC -52.300 -55.800 -59.200 -62.400 

 Runtime (sec) 1.200 28.500 31.800 35.200 

𝛾 =10 Model MSE 0.082 0.079 0.068 0.061 

 Model MAE 0.198 0.192 0.176 0.165 

 Log-Likelihood 58.300 59.700 61.400 63.100 

 AIC -100.600 -103.400 -106.800 -110.200 

 BIC -84.700 -88.200 -91.600 -95.000 

 Runtime (sec) 1.100 27.800 30.500 33.900 

 
Table 1 presents the key evaluation metrics for the models, where the BALBR 

method demonstrated superior performance across all measures, including the lowest 

Mean Squared Error (MSE) and Mean Absolute Error (MAE), the highest Log-Likelihood, 

and the most favorable model selection criteria (AIC and BIC). These results reflect the 

model’s high estimation accuracy and excellent fit, particularly under the high-precision 

setting (γ=10), despite its comparatively longer runtime. 
Table 2. Estimated Coefficient Bias and Standard Deviation (Bias ± SD) for BR, BBR, 

BLBR, and BALBR Models under Sample Size N = 30 at Two Precision Levels (𝛾 =
 5 𝑎𝑛𝑑 𝛾 =  10) 

 Coefficient True Value 
BR (Bias ± 

SD) 

BBR (Bias ± 

SD) 

BLBR (Bias ± 

SD) 

BALBR (Bias ± 

SD) 

𝛾 =5 β₁ 1.500 +0.080 ± 0.090 +0.055 ± 0.075 +0.035 ± 0.060 +0.025 ± 0.050 
 β₂ -1.500 -0.100 ± 0.100 -0.065 ± 0.080 -0.040 ± 0.065 -0.025 ± 0.055 
 β₃ 1.000 +0.060 ± 0.080 +0.035 ± 0.065 +0.020 ± 0.050 +0.010 ± 0.040 
 β₄ 0.000 +0.110 ± 0.070 +0.070 ± 0.055 +0.040 ± 0.040 +0.020 ± 0.030 
 β₅ 0.000 -0.080 ± 0.070 -0.050 ± 0.055 -0.030 ± 0.040 -0.015 ± 0.030 
 β₆ 0.000 +0.100 ± 0.070 +0.060 ± 0.055 +0.030 ± 0.040 +0.015 ± 0.030 
 β₇ 0.000 -0.120 ± 0.075 -0.075 ± 0.060 -0.040 ± 0.045 -0.020 ± 0.035 
 β₈ 0.000 +0.060 ± 0.065 +0.040 ± 0.050 +0.025 ± 0.040 +0.010 ± 0.030 
 β₉ 0.000 -0.090 ± 0.070 -0.060 ± 0.055 -0.030 ± 0.040 -0.015 ± 0.030 
 β₁₀ 0.000 +0.070 ± 0.065 +0.045 ± 0.050 +0.025 ± 0.040 +0.010 ± 0.030 

𝛾 =10 β₁ 1.500 +0.040 ± 0.050 +0.025 ± 0.040 +0.015 ± 0.030 +0.010 ± 0.025 
 β₂ -1.500 -0.050 ± 0.055 -0.030 ± 0.045 -0.015 ± 0.035 -0.010 ± 0.030 
 β₃ 1.000 +0.030 ± 0.045 +0.020 ± 0.035 +0.010 ± 0.030 +0.005 ± 0.025 
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 β₄ 0.000 +0.060 ± 0.040 +0.035 ± 0.030 +0.020 ± 0.025 +0.010 ± 0.020 
 β₅ 0.000 -0.040 ± 0.040 -0.025 ± 0.030 -0.010 ± 0.025 -0.005 ± 0.020 
 β₆ 0.000 +0.050 ± 0.040 +0.035 ± 0.030 +0.015 ± 0.025 +0.005 ± 0.020 
 β₇ 0.000 -0.070 ± 0.045 -0.040 ± 0.035 -0.020 ± 0.030 -0.010 ± 0.025 
 β₈ 0.000 +0.035 ± 0.040 +0.025 ± 0.030 +0.010 ± 0.025 +0.005 ± 0.020 
 β₉ 0.000 -0.050 ± 0.045 -0.030 ± 0.035 -0.015 ± 0.030 -0.005 ± 0.025 
 β₁₀ 0.000 +0.045 ± 0.040 +0.030 ± 0.030 +0.015 ± 0.025 +0.005 ± 0.020 

 

Table 2 summarizes the bias and standard deviation (SD) of the estimated coefficients 

for four models BR, BBR, BLBR, and BALBRacross two precision levels, γ=5 and γ=10. The 

BALBR model consistently achieves the lowest bias and variability for both active 

coefficients (𝛽1,𝛽2,𝛽3) and inactive coefficients (𝛽4 to 𝛽10 ). At the lower precision level 

(γ=5), BALBR produces nearly unbiased estimates with reduced SD for the non-zero 

coefficients, reflecting high estimation accuracy. Additionally, it applies strong shrinkage 

to zero-valued coefficients with minimal variability, outperforming other models in 

variable selection effectiveness. With increased precision (𝛾 = 10), the model further 

decreases bias and variability, demonstrating enhanced robustness and stability under 

more stringent conditions. These findings underscore the superiority of BALBR in 

providing accurate estimation and efficient variable selection via its adaptive shrinkage 

approach. 

 

 
Figure 1. Visual Comparison of Performance Metrics for BR, BBR, BLBR, and BALBR 

Models with Sample Size N=30 and Precision Level 𝛾 = 5 

Figure 1 provides a concise comparison of the performance of four Beta regression 

models with a sample size of N=30 and precision parameter 𝛾 = 5. The Bayesian Adaptive 

Lasso Beta Regression model (BALBR) demonstrates the lowest bias and mean squared 

error, reflecting superior accuracy and estimation stability relative to the other methods. 

In contrast, the traditional Beta Regression model (BR) shows higher variance, indicating 

greater fluctuation in parameter estimates. These results underscore the advantage of 

adaptive lasso-based approaches in enhancing estimation quality under the given 

conditions. 
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Figure 2: Comparative performance of the BALBR, BBR, BLBR, and BR methods 

under the high precision level (𝛾 = 10), evaluated using key metrics: Mean Squared Error 

(MSE), Mean Absolute Error (MAE), Log-Likelihood, Akaike Information Criterion (AIC), 

Bayesian Information Criterion (BIC), and computational runtime. 

Figure 2 shows that, under the high precision level (𝛾 = 10), the BALBR model 

demonstrates superior performance by achieving the lowest values for MSE and MAE, 

the highest Log-Likelihood, and the most favorable AIC and BIC scores, despite requiring 

a relatively longer runtime. 

  

 
Figure 3. Visual Comparison of Performance Metrics for Beta Regression Models (BR, 

BBR, BLBR, BALBR) with Sample Size N=30 and Precision Level γ=5 
Figure 3 demonstrates that the BALBR model consistently yields the lowest standard 

deviation and bias across most coefficients under both precision levels (γ=5 and γ=10). 

This highlights the model’s superior estimation accuracy and robustness compared to the 

other approaches. 
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Table 3. Comparative Performance Metrics of Beta Regression Models (N = 100) 

Under Different Precision Levels (𝛾 = 5, 10) 

 Metric BR BBR BLBR BALBR 

𝛾 =5 Model MSE 0.062 0.058 0.049 0.043 

 Model MAE 0.185 0.178 0.162 0.152 

 Log-Likelihood 127.5 129.2 132.6 135.3 

 AIC -239 -242.4 -249.2 -254.6 

 BIC -210.3 -214.5 -221.3 -226.7 

 Runtime (sec) 2.8 45.2 48.7 52.3 

𝛾 =10 Model MSE 0.035 0.032 0.028 0.024 

 Model MAE 0.132 0.126 0.115 0.108 

 Log-Likelihood 178.6 180.9 184.3 187.5 

 AIC -341.2 -345.8 -352.6 -359 

 BIC -312.5 -317.9 -324.7 -331.1 

 Runtime (sec) 2.5 43.7 47.2 51.8 

 

Table 3 shows a comparative evaluation of four Beta regression models with a sample 

size of N=100 under two precision levels (𝛾 = 5and 𝛾 = 10). The results indicate that 

across both precision levels, the BALBR model consistently demonstrates superior 

performance, achieving the lowest values for MSE and MAE, the highest Log-Likelihood, 

and the most favorable AIC and BIC scores, despite incurring a moderately longer 

runtime. 
Table 4. Bias and Standard Deviation of Estimated Coefficients for Beta Regression 

Models (N = 100) Under Precision Levels 𝛾 =5 and 𝛾 = 10 

 Coefficient True Value 
BR (Bias ± 

SD) 

BBR (Bias ± 

SD) 

BLBR (Bias ± 

SD) 

BALBR (Bias ± 

SD) 

𝛾 =5 β₁ 1.500 +0.035 ± 0.080 +0.025 ± 0.070 +0.015 ± 0.060 +0.005 ± 0.050 
 β₂ -1.500 -0.045 ± 0.090 -0.030 ± 0.080 -0.015 ± 0.070 -0.010 ± 0.060 
 β₃ 1.000 +0.025 ± 0.070 +0.015 ± 0.060 +0.010 ± 0.050 +0.005 ± 0.040 
 β₄ 0.000 +0.055 ± 0.050 +0.035 ± 0.040 +0.020 ± 0.030 +0.010 ± 0.020 
 β₅ 0.000 -0.045 ± 0.050 -0.025 ± 0.040 -0.010 ± 0.030 +0.000 ± 0.020 
 β₆ 0.000 +0.065 ± 0.050 +0.040 ± 0.040 +0.020 ± 0.030 +0.010 ± 0.020 
 β₇ 0.000 -0.055 ± 0.050 -0.035 ± 0.040 -0.020 ± 0.030 -0.010 ± 0.020 
 β₈ 0.000 +0.035 ± 0.050 +0.025 ± 0.040 +0.010 ± 0.030 +0.000 ± 0.020 
 β₉ 0.000 -0.045 ± 0.050 -0.030 ± 0.040 -0.015 ± 0.030 +0.000 ± 0.020 
 β₁₀ 0.000 +0.050 ± 0.050 +0.030 ± 0.040 +0.015 ± 0.030 +0.005 ± 0.020 

𝛾 =10 β₁ 1.500 +0.020 ± 0.040 +0.015 ± 0.035 +0.010 ± 0.030 +0.005 ± 0.025 
 β₂ -1.500 -0.030 ± 0.045 -0.020 ± 0.040 -0.010 ± 0.035 -0.005 ± 0.030 
 β₃ 1.000 +0.015 ± 0.035 +0.010 ± 0.030 +0.005 ± 0.025 +0.000 ± 0.020 
 β₄ 0.000 +0.035 ± 0.030 +0.025 ± 0.025 +0.010 ± 0.020 +0.000 ± 0.015 
 β₅ 0.000 -0.025 ± 0.030 -0.015 ± 0.025 -0.005 ± 0.020 +0.000 ± 0.015 
 β₆ 0.000 +0.045 ± 0.030 +0.030 ± 0.025 +0.010 ± 0.020 +0.005 ± 0.015 
 β₇ 0.000 -0.035 ± 0.030 -0.025 ± 0.025 -0.010 ± 0.020 +0.000 ± 0.015 
 β₈ 0.000 +0.025 ± 0.030 +0.015 ± 0.025 +0.005 ± 0.020 +0.000 ± 0.015 
 β₉ 0.000 -0.030 ± 0.030 -0.020 ± 0.025 -0.010 ± 0.020 +0.000 ± 0.015 
 β₁₀ 0.000 +0.035 ± 0.030 +0.020 ± 0.025 +0.010 ± 0.020 +0.005 ± 0.015 

 
Table 4 shows that the BALBR model consistently provides more accurate coefficient 

estimates, achieving the lowest bias and standard deviation for both active coefficients(𝛽1, 

𝛽2, 𝛽3 ) and inactive ones(𝛽4  𝑡𝑜 𝛽10)  at both precision levels (𝛾 = 5 𝑎𝑛𝑑 𝛾 = 10). These 

results confirm the model’s strong ability to accurately estimate influential variables while 

effectively shrinking irrelevant ones toward zero, thus outperforming the other models in 

terms of estimation accuracy and variable selection efficiency. 
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Figure 4: Performance comparison of BALBR, BBR, BLBR, and BR methods at 𝛾 = 5 

based on MSE, MAE, LogLikelihood, AIC, BIC, and Runtime. 

Figure 4: Comparison of the performance of BALBR, BBR, BLBR, and BR models at a 

lower precision level (𝛾 = 5), evaluated using MSE, MAE, Log-Likelihood, AIC, BIC, and 

Runtime. The results indicate that the BALBR model demonstrates the best overall 

performance, achieving the lowest MSE and MAE, the highest Log-Likelihood, and the 

most favorable AIC and BIC values. This superior accuracy comes at the cost of a slightly 

longer runtime relative to the other methods. 

 
Figure 5: Comparative performance of BALBR, BBR, BLBR, and BR methods under 

high precision level (γ=10), evaluated using MSE, MAE, Log-Likelihood, AIC, BIC, and 

Runtime. 
Figure 5 clearly demonstrates that, at the higher precision level (𝛾 = 10), the BALBR 

model delivers the most favorable overall performance achieving the lowest MSE and 

MAE, the highest Log-Likelihood, and the most optimal AIC and BIC values despite 

requiring a slightly longer runtime compared to the other methods. 
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Figure 6: Estimation performance of BR, BBR, BLBR, and BALBR methods based on 

standard deviation and bias (with 95% confidence intervals) across coefficients under two 

precision levels (𝛾 = 5,10) 

Figure 6 highlights that, under both precision levels (𝛾 = 5and 𝛾 = 10), the BALBR 

model consistently achieves the lowest standard deviation and bias across nearly all 

coefficients. This indicates its superior precision, robustness, and estimation accuracy in 

comparison to the BR, BBR, and BLBR models. 

 

Table 5: Performance metrics for BR, BBR, BLBR, and BALBR methods in Example 

One (N=500) under two precision levels (γ =5and γ =10), evaluated using MSE, MAE, 

Log-Likelihood, AIC, BIC, and Runtime. 

 Metric BR BBR BLBR BALBR 

𝛾 =5 Model MSE 0.012 0.011 0.009 0.008 

 Model MAE 0.078 0.074 0.068 0.063 

 

Log-

Likelihood 
634.2 638.5 644.9 650.3 

 AIC -1252.4 -1261 -1273.8 -1284.6 

 BIC -1188.3 -1197.7 -1210.5 -1221.3 

 Runtime (sec) 8.4 132.5 143.2 158.7 

𝛾 =10 Model MSE 0.0071 0.0065 0.0053 0.0046 

 Model MAE 0.058 0.054 0.048 0.044 

 

Log-

Likelihood 
892.7 897.4 905.2 911.8 

 AIC -1769.4 -1778.8 -1794.4 -1807.6 

 BIC -1705.3 -1715.5 -1731.1 -1744.3 

 Runtime (sec) 7.9 128.3 138.6 153.1 

 

Table 5 shows that, with a large sample size (N=500), the BALBR model consistently 

outperforms the other methods at both precision levels (𝛾 = 5𝑎𝑛𝑑 𝛾 = 10). It achieves the 

lowest values for MSE and MAE, the highest Log-Likelihood, and the most favorable AIC 

and BIC scores. Although it incurs a longer computational time, the overall results confirm 

the model’s superior estimation accuracy and model fit. 

Table 6. Bias and Standard Error (Bias ± SE) of Estimated Coefficients for BR, BBR, 

BLBR, and BALBR Models under Two Precision Levels (𝛾 = 5 and 𝛾 = 10) 
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 Coefficient True Value BR Bias (SE) BBR Bias (SE) BLBR Bias (SE) BALBR Bias (SE) 

PHI=5 β₁ 1.500 +0.010 ± 0.080 +0.000 ± 0.070 +0.000 ± 0.060 +0.000 ± 0.050 
 β₂ -1.500 –0.010 ± 0.090 –0.010 ± 0.080 –0.000 ± 0.070 –0.000 ± 0.060 
 β₃ 1.000 +0.010 ± 0.070 +0.000 ± 0.060 +0.000 ± 0.050 +0.000 ± 0.040 
 β₄ 0.000 +0.020 ± 0.050 +0.010 ± 0.040 +0.000 ± 0.030 +0.000 ± 0.020 
 β₅ 0.000 –0.010 ± 0.050 –0.010 ± 0.040 –0.000 ± 0.030 –0.000 ± 0.020 
 β₆ 0.000 +0.020 ± 0.050 +0.010 ± 0.040 +0.000 ± 0.030 +0.000 ± 0.020 
 β₇ 0.000 –0.020 ± 0.050 –0.010 ± 0.040 –0.000 ± 0.030 –0.000 ± 0.020 
 β₈ 0.000 +0.010 ± 0.050 +0.000 ± 0.040 +0.000 ± 0.030 +0.000 ± 0.020 
 β₉ 0.000 –0.010 ± 0.050 –0.010 ± 0.040 –0.000 ± 0.030 –0.000 ± 0.020 
 β₁₀ 0.000 +0.020 ± 0.050 +0.010 ± 0.040 +0.000 ± 0.030 +0.000 ± 0.020 

PHI=10 β₁ 1.500 1.501 ± 0.042 1.500 ± 0.039 1.500 ± 0.036 1.500 ± 0.034 
 β₂ –1.500 –1.498 ± 0.045 –1.499 ± 0.042 –1.500 ± 0.038 –1.500 ± 0.036 
 β₃ 1.000 1.001 ± 0.038 1.000 ± 0.035 1.000 ± 0.032 1.000 ± 0.030 
 β₄ 0.000 +0.008 ± 0.028 +0.004 ± 0.025 +0.001 ± 0.022 +0.000 ± 0.020 
 β₅ 0.000 –0.007 ± 0.028 –0.003 ± 0.025 –0.001 ± 0.022 –0.000 ± 0.020 
 β₆ 0.000 +0.010 ± 0.028 +0.005 ± 0.025 +0.002 ± 0.022 +0.001 ± 0.020 
 β₇ 0.000 –0.009 ± 0.028 –0.005 ± 0.025 –0.002 ± 0.022 –0.001 ± 0.020 
 β₈ 0.000 +0.006 ± 0.028 +0.003 ± 0.025 +0.001 ± 0.022 +0.000 ± 0.020 
 β₉ 0.000 –0.008 ± 0.028 –0.004 ± 0.025 –0.001 ± 0.022 –0.000 ± 0.020 
 β₁₀ 0.000 +0.009 ± 0.028 +0.005 ± 0.025 +0.002 ± 0.022 +0.001 ± 0.020 

 
Table 6 demonstrates that the coefficient-level results for N=500 indicate that the 

BALBR model consistently yields the smallest bias and standard error across both active 

and inactive coefficients under both precision settings (𝛾 = 5𝑎𝑛𝑑 𝛾 = 10). These outcomes 

underscore the model’s high estimation accuracy and its strong ability to shrink irrelevant 

coefficients toward zero, establishing BALBR as the most stable and dependable method 

among the evaluated approaches. 

 

 
Figure 7. Performance metrics comparison of BALBR, BBR, BLBR, and BR methods at 

precision level 𝛾 = 5 , based on MSE, MAE, Log-Likelihood, AIC, BIC, and Runtime 
 
Figure 7 shows that at the lower precision level (𝛾 = 5) and sample size N=500, the 

BALBR model demonstrates the most favorable overall performance, attaining the lowest 

MSE and MAE, the highest Log-Likelihood, and the most optimal AIC and BIC values, 

albeit with a relatively longer runtime compared to the competing models. 
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Figure 8. Performance metrics comparison of BALBR, BBR, BLBR, and BR methods at 

precision level γ=10, based on MSE, MAE, Log-Likelihood, AIC, BIC, and Runtime 
Figure 8 shows that at the higher precision level (𝛾 = 10) with a sample size of N=500, 

the BALBR model delivers the most favorable overall performance, achieving the lowest 

MSE and MAE, the highest Log-Likelihood, and the best AIC and BIC values, despite 

incurring a comparatively longer runtime than the other methods. 

 

 
Figure 9. Estimation performance comparison of BR, BBR, BLBR, and BALBR methods 

based on standard error and bias with 95% confidence intervals under two precision levels 
(𝛾 = 5 𝑎𝑛𝑑 𝛾 = 10) 

Figure 9 shows that across both precision levels (𝛾 = 5 and 𝛾 = 10), the BALBR model 

consistently exhibits the lowest standard errors and the smallest bias across all 

coefficients, highlighting its superior accuracy and robustness in parameter estimation 

compared to the other methods 
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4. Discussion  

7. Real Data Application  

The Gasoline Yield dataset, originally compiled by Prater, records the proportion of 

crude oil converted into gasoline through distillation and fractionation processes. In a 

subsequent analysis, Atkinson applied a linear regression model to this dataset and 

identified a pronounced asymmetry in the residuals, suggesting the occurrence of both 

substantial over- and under-predictions. 

In the current study, a controlled data contamination procedure was employed by 

systematically modifying the initial values of the explanatory variables by 10%. This 

perturbation was introduced intentionally to evaluate the robustness and stability of the 

regression models under mild deviations in the input data. 

Table 7. Estimated Coefficients for Gasoline Yield Data Using Classical BR, Bayesian 

BR, BLBR, and BALBR Models 

Predictor 
Classical 

BR 
Bayesian BR 

Bayesian Lasso 

(BLBR) 

Bayesian Adaptive 

Lasso (BALBR) 

Intercept -6.160* -6.12* -5.95* -6.05* 

gravity 1.727* 1.71* 1.52* 1.68* 

pressure 0.013* 0.01* 0.01* 0.012* 

temp 0.001* 0.00* 0.001 (shrunk) 0.000 

batch -0.009* -0.01* -0.005 (shrunk) -0.000 

 

Table 7 shows that in the real data analysis based on the Gasoline Yield dataset, the 

BALBR model successfully shrinks the coefficients of temp and batch to zero, suggesting 

their negligible impact on the response variable, while preserving the significant 

contributions of gravity and pressure. These results demonstrate the model’s effectiveness 

in simultaneously achieving accurate estimation and reliable variable selection. 

Table 8. Model Performance Comparison on the Gasoline Yield Dataset Using 

Classical BR, Bayesian BR, BLBR, and BALBR Methods 

Criterion Classical BR Bayesian BR 
Bayesian Lasso 

(BLBR) 

Bayesian Adaptive 

Lasso (BALBR) 

Mean Squared Error 

(MSE) 
0.0021 0.002 0.0019 0.0018 

Mean Absolute Error 

(MAE) 
0.032 0.031 0.03 0.029 

R-squared 0.872 0.875 0.878 0.88 

Precision  440.123*  435.12*  420.5 415.3 

Variable Selection None None 
Moderate 

shrinkage 

Strong shrinkage 

(sparse model) 

 

Table 8 demonstrates that the evaluation results based on the Gasoline Yield dataset 

highlight the BALBR model’s superior predictive performance, as evidenced by the lowest 

MSE and MAE, the highest  R2, and the strongest shrinkage effect, leading to a sparse 

model structure. These outcomes underscore the model’s effectiveness in delivering both 

accurate estimation and efficient variable selection. 
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Figure 10. Trace plots of posterior samples for the BLBR model coefficients using the 

Gasoline Yield dataset  

Figure 10 shows that the trace plots of the BLBR model indicate that the coefficients 

for gravity and pressure display satisfactory mixing and convergence, whereas the temp 

coefficient demonstrates a distinct shrinkage trend toward zero. Additionally, several 

batch variables oscillate around zero, reflecting the model’s moderate shrinkage effect on 

predictors with limited influence. 

 
Figure 11. Posterior distributions of the BLBR model coefficients based on the 

Gasoline Yield dataset 

Figure 11 shows that the posterior distributions obtained from the BLBR model reveal 

that the coefficients for gravity and pressure are sharply concentrated and skewed away 

from zero, reinforcing their significance in the model. In contrast, the temp coefficient 
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displays a sparse distribution centered near zero, indicating strong shrinkage. 

Additionally, the majority of batch variables exhibit posterior distributions centered 

around zero with varying dispersion, suggesting moderate uncertainty and partial 

shrinkage effects. 

 
Figure 12. Trace plots of posterior samples for the BALBR model coefficients using the 

Gasoline Yield dataset 

Figure 12 illustrates that the trace plots of the BALBR model reveal stable estimation 

for the gravity and pressure coefficients, as evidenced by their good mixing and 

convergence. In contrast, the temp coefficient exhibits a clear shrinkage trend toward zero. 

Additionally, most batch variables fluctuate closely around zero, indicating a stronger 

shrinkage effect and a sparser model structure compared to the BLBR model. 
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Figure 13. Posterior distributions of the BALBR model coefficients based on the 

Gasoline Yield dataset 

Figure 13 shows that the posterior distributions derived from the BALBR model show 

that the coefficients for gravity and pressure are distinctly separated from zero, affirming 

their significance within the model. Conversely, the distribution of temp is tightly 

concentrated around zero, suggesting strong shrinkage. Additionally, the majority of 

batch variables display sharply peaked distributions centered at zero, highlighting the 

model’s aggressive shrinkage mechanism and its effectiveness in inducing sparsity in the 

parameter estimates. 

5. Conclusion 

This study presented a Bayesian Adaptive Lasso framework for variable selection and 

parameter estimation within Beta regression models. By incorporating coefficient-specific 

penalty weights, the proposed model effectively applies adaptive shrinkage, achieving a 

balance between estimation precision and model sparsity. The simulation results 

confirmed that the BALBR model consistently outperforms conventional BR, Bayesian BR, 

and Bayesian Lasso BR approaches in terms of bias reduction, lower standard errors, and 

improved variable selection accuracy under various conditions. Furthermore, the analysis 

of real-world data demonstrated the practical utility of the method in distinguishing 

influential predictors and eliminating irrelevant ones. Overall, the Bayesian Adaptive 

Lasso Beta Regression model offers a robust and adaptable approach for modeling 

bounded outcomes, particularly in the presence of high-dimensional predictors. 
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