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Abstract:  The periodontium is a assisting structure that surrounds and helps the teeth, it consists 

of various tissues consisting of the gingiva, the cementum, the periodontal ligament and alveolar 

helping bone. Knowing the reality that the periodontium is a complex system in the frame, this 

paper demonstrates viable mirrored image of chaos idea and the sector of periodontology, and most 

generally used practical responses to describe the average feeding rate of a predator are Lotka-

Volterra type and Holling type practical reaction characteristic’s.System features are discussed by 

its equilibrium points, stability, dissipativity and bifurcation analysis. Graphical representation 

through numerical simulations are presented. Our study has shown that the periodontium system 

(1) is bifurcate and unstable system. It has dissipative equilibrium point and conservative 

equilibrium point, in addition to all of this the periodontium system (1) indicates a state of extreme 

chaos with Lyapunov dimension  𝐷𝐿 = 1.7022130 where the Lyapunov exponents are  𝐿1 =

0.908835     𝑎𝑛𝑑    𝐿2 =  −1.294244 , after that we applied active control technique and adaptive 

control technique. By understanding the periodontium system (1) very well we estimated the rate 

of periodontitis in mathematical periodontium model ‘b’ as control parameter and successfully 

controlled the chaos. This brings us to the purpose of this research paper, whereas understanding 

the periodontium system’s structure and function may prove valuable in managing illness. 

Keywords: Chaos, Control techniques, Equilibrium points, Holling type, Periodontium system, 

stability analysis.  

1. Introduction 

Population ecology is the examine of populations mainly populace abundance and 

how they alternate through the years. The interplay of populace in ecology can divide in 

to distinctive classes inclusive of mutualism, commensalism, opposition, prey-predator 

and etc. [1]. The interplay conduct among prey and predator in an atmosphere can 

purpose the country of the population to exchange. These interactions can have a positive 

and terrible effect, or maybe haven't any effect at the interacting species. So that what 

cause one species to end up extinct is a very excessive predation rate of the prey and the 

low increase charge of prey [2]. Most typically used functional responses to describe the 

average feeding charge of a predator are Lotka-Volterra type and Holling type purposeful 

reaction capabilities [3]. A predator’s per capita feeding charge on prey, or its practical 

response, presents a foundation for predator–prey idea [4] As a unique “prey-predator 

machine “the periodontium is a set of interacting factors. Studies inside the 1960s gave 

experimental proof stressing the critical role of micro organism inside the etiology of 

periodontitis. The linear model in [5] implicated that bacterial deposits are a primary and 

crucial issue within the pathogenesis of periodontal sicknesses. Periodontal illnesses are 
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a sort of gum disorder due to the extreme colonization of a bacteria. The commonplace 

signs and symptoms are with extra gum swelling and pain, which might also even harm 

the jaw bones and corresponding nerves and tissues. Gingivitis and periodontitis are the 

most commonplace bacterial infection within the human craniofacial vicinity. The 

sedimentation of plaque on the floor of tooth results in gingivitis due to abnormal and 

incorrect dental care. When untreated early, it may emerge to irreversible periodontal 

illnesses because of secretion of harmful pollutants [6]. To display the relevance of 

mathematical version to fitness troubles, it has been applied [7] to experimental oral 

biofilm initiation of 3 exclusive species: Porphyromonas gingivalis, Streptococcus 

gordonii and Terponema denticola. These species are worried in periodontal biofilms that 

could cause enamel/bone loss. A colonization hierarchy is installed from the beginning of 

oral biofilm growth in oral biofilms, which starts with number one colonizers 

(streptococcus), then secondary colonizers which includes fusobacterium, and eventually 

ends with the incorporation of anaerobic gram-bad pathogens, chargeable for periodontal 

diseases such as P.Gingivalis and T.Denticola. The attachment and improvement of 

pathogens inside the oral biofilm is therefore dependent on the attachment of number one 

and secondary colonizers [8], [9], [10]. Analyzing such interactions may be difficult, 

therefore mathematical modelling of organic approaches targets to translate conceptual 

hypotheses into the handiest feasible equations to benefit insight into fundamental 

mechanisms. So, this paper is dependent as follows:Section 2 presents a description of the 

periodontium system. Section 3 investigates the features of the periodontium system 

using equilibrium points, stability analysis, and dissipative properties 

[11][12][13][14][15][16]. Section 4 performs numerical and graphical analysis [17][18]. 

Section 5 applies chaotic periodontium system stabilization and displays its system 

dynamics [19][20][21][22]. Section 6 presents comparison tables before and after control. 

Finally, the study concludes 

2. Materials and Methods 

This study adopts a mathematical modeling approach to analyze the dynamic 

behavior of the periodontium as a prey–predator system. The system is defined using a 

Lotka-Volterra differential framework with Holling Type I functional response to describe 

the interaction between gingiva (prey) and periodontitis (predator). The model 

parameters were initialized based on standard biological assumptions, and stability was 

analyzed using equilibrium point analysis, Jacobian matrix evaluation, Routh-Hurwitz 

stability criteria, and Lyapunov functions. Numerical simulations were conducted in 

MATLAB to visualize phase portraits, bifurcation diagrams, and Lyapunov exponent 

dynamics. Subsequently, control strategies were introduced: (1) an adaptive control law 

incorporating biological parameter estimation and (2) an active nonlinear feedback 

control to stabilize system trajectories. Each method’s effectiveness was evaluated by 

comparing the system's stability and chaos levels before and after control. 

3. Results and Discussion 

System description 

A continuous time Lotka-Voltera prey-predator machine [8] wherein the competition 

between two species G and P is modeled by the subsequent normal differential equations 
𝑑𝑔

𝑑𝑡
= 𝑎𝑔(1 − 𝑔) − 𝑏𝑔𝑝

𝑑𝑝

𝑑𝑡
= 𝑐𝑔𝑝                         

} … … … … … … … … … … … . . (1) 

Where 𝑔 = 𝑔(𝑡), 𝑝 = 𝑝(𝑡) denote the population density of two species at time t 

 𝑎𝑛𝑑   𝑎 , 𝑏 , 𝑎𝑛𝑑 𝑐  are positive parameters. 

𝑔  from the word gingiva denote to the prey density in year (generation) n. 

𝑝 from the word periodontitis denote to the predator density in year (generation) n. 

𝑏𝑔  represents the number of prey individuals consumed per unit time by an 

individual predator. 

𝑐𝑔𝑝  is the predator response.  
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The parameters values are taken as: 
𝑎 = 4             ,      𝑏 = 0.2          ,      𝑐 = 3.5 } … … … … … … . (2) 

 

The kind I reaction is the result of the simple assumption that the probability of a 

given predator encountering prey in a hard and fast time c programming language T_t   

inside a set spatial place relies upon linearly on the prey density. Using the notation of 

Holling’s paper [9] we might also express this dating in the shape 
 𝑍 = 𝑏𝑇𝑠𝑔 … … … … … … … … … … … … … … … … (3) 

Where Z is the number of preys consumed by means of one predator, g is the prey 

density, T_s is the time available for looking and b  is a consistent of proportionality 

termed the “discovery fee” by means of Holling. In the absence of a need to spend time 

handling the prey [10], all of the time can be used for looking i.e. 𝑇𝑠 = 𝑇𝑡   . 

We have type I response assuming that the predator density 𝑝  act independently, in 

a time 𝑇𝑠 = 𝑇𝑡 , the total number of preys will be reduced by quantity  𝑏𝑇𝑔𝑝 

System analysis 

This section, analyze system (1) and highlight its features 

Points of Equilibrium 

The beginning in analyzing any system is to find points of its equilibrium, so we need 

to determine:   
𝑑𝑔

𝑑𝑡
= 𝐺̇ = 0  𝑎𝑛𝑑  

𝑑𝑝

𝑑𝑡
= 𝑃̇ = 0 . we solve for 𝑔 𝑎𝑛𝑑 𝑝. 

 

1. 𝑎𝑔(1 − 𝑔) − 𝑏𝑔𝑝 = 0  this simplifies to 𝑔 [𝑎(1 − 𝑔) − 𝑏𝑝] = 0  

so, we have two possibilities:  𝑔 = 0     𝑜𝑟    𝑎(1 − 𝑔) = 𝑏𝑝  

2. 𝑐𝑔𝑝 = 0  this simplifies to   𝑔 = 0    𝑜𝑟   𝑝 = 0  

From the above equations, we get equilibrium points as follows: 

When  𝑝 = 0 then 𝑎𝑔(1 − 𝑔) = 0 and this simplifies to  𝑔 = 0    𝑜𝑟     𝑔 = 1  

So, we have: 

(i   ( . The trivial stage or the extinction of all population equilibrium point: 𝐸0 =

(𝐺, 𝑃) = (0,0) . 

(ii). The extinction of predator equilibrium point:  𝐸1 = (𝐺, 𝑃) = (1,0) . 

When  𝑔 = 0 then  𝑝 can be any value so, we have: 

(iii). The extinction of prey equilibrium points which is also a line equilibrium point: 
 𝐸2 = (𝐺, 𝑃) = (0, 𝑝) 

Stability analysis  

the Jacobean matrix for periodontium system (1) is: 

𝐽 = [
𝑎 − 2𝑎𝑔 − 𝑏𝑝      −𝑏𝑔
𝑐𝑝                          𝑐𝑔

]  

 

By putting det (𝐽 − 𝐾I) = 0 , the characteristic equation for periodontium system (1) 

is: 
𝑘2 + 𝑘(𝑏𝑝 + 2𝑎𝑔 − 𝑎 − 𝑐𝑔) + 𝑎𝑐𝑔(1 − 2𝑔) = 0 … … … … … … … … … … … … … (4)  
 

 Roots of characteristic equation 

 The balance of equilibrium points of periodontium gadget (1) is determined by using 

signal of the actual part of the Jacobean matrix’s eigenvalues (function equation roots). If 

all the eigenvalues have poor actual parts then the gadget is strong. If at the least one 

eigenvalue has high quality actual part then it's far risky. 

The characteristic equation at 𝐸0 = (0,0)   is  𝑘2 − 𝑎𝑘 = 0 … … … … … … … … … . . . . (5) 

And the roots are 𝑘1 = 0   𝑎𝑛𝑑   𝑘2 = 4 > 0 

So, the periodontium system (1) is unstable. 

The characteristic equation at 𝐸1 = (1,0)  is   𝑘2 + 𝑘(𝑎 − 𝑐) − 𝑎𝑐 = 0 … … … … … … . (6) 

And the roots are 𝑘1 = −4   𝑎𝑛𝑑   𝑘2 = 3.5 > 0 

So, the periodontium system (1) is unstable. 

The characteristic equation at 𝐸2 = (0, 𝑃)  is  𝑘2 + 𝑘(𝑏𝑝 − 𝑎) = 0 … … … … … … … … (7) 
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And the roots are 𝑘1 = 0   𝑎𝑛𝑑   𝑘2 = 4 − 0.2𝑝  

So, the periodontium system (1) will be unstable when  𝑝 ≤ 20 . 

 Routh stability criteria 

Theorem (i) the essential situation for the nonlinear device to be solid is: all the 

elements in the first column of Routh array must have nice values. 

(ii) If a 0 is present on the primary column of Routh array, then the corresponding 

pole will oscillate on the imaginary axis. 

(iii) the variety of times of signs and symptoms trade of the factors of first column is 

the wide variety of poles at the proper-hand aspect of s-plan which pressure the nonlinear 

system to be volatile. 

From (5) we have 
 𝑎2 = 1 , 𝑎1 = −4 , 𝑎0 = 0  

 

𝑏𝑛−2 =  
𝑎𝑛−1𝑎𝑛−2−𝑎𝑛𝑎𝑛−3

𝑎𝑛−1
    ⟹   𝑏0 =  𝑎0 = 0  

Table 1. Routh array at 𝑬𝟎 

𝑘2 1 0 

𝑘1 -4 0 

𝑘0 0 0 

 

From (6) we have  
𝑎2 = 1 , 𝑎1 = 0.5 , 𝑎0 = −14   

 

𝑏𝑛−2 =  
𝑎𝑛−1𝑎𝑛−2−𝑎𝑛𝑎𝑛−3

𝑎𝑛−1
    ⟹   𝑏0 =  𝑎0 = −14  

Table 2. Routh array at  𝑬𝟏 

𝑘2 1 -14 

𝑘1 0.5 0 

𝑘0 -14 0 

 

From (7) we have 
𝑎2 = 1    , 𝑎1 = 0.2𝑝 − 4     , 𝑎0 = 0   

 

𝑏𝑛−2 =  
𝑎𝑛−1𝑎𝑛−2−𝑎𝑛𝑎𝑛−3

𝑎𝑛−1
    ⟹   𝑏0 =  𝑎0 = 0  

Table 3. Routh array at 𝑬𝟐 

𝑘2 1 0 

𝑘1 0.2p - 4 0 

𝑘0 0 0 

 

Proposition 1: 

From the calculated arrays 1 and 2, certainly, all of the signs of the first column are 

change and as a result, the periodontium system (1) is unstable at  𝐸0 𝑎𝑛𝑑 𝐸1  

For no sign changes in the first column of array 3, it is necessary that the condition 

𝑝 ≥ 20 be satisfied. Thus, the characteristic equation (7) has roots with negative real parts 

if  𝑝 ≤ 20. Otherwise the periodontium system (1) will be instability. 

 Hurwitz stability criteria 

The Hurwitz determinants  ∆1 𝑎𝑛𝑑 ∆2 of the characteristic equation are defined to be 

the minors of the characteristic equation. If all these minors hold positive values the 

system remains stable otherwise exhibits instability. 
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From equation (5) which is  𝑘2 − 4𝑘 = 0  we find 
∆1= 𝑎𝑛−1 = 𝑎1 = −4      < 0  

 

∆2= |
𝑎𝑛−1 𝑎𝑛−3

𝑎𝑛 𝑎𝑛−2
| = |

𝑎1 0
𝑎2 𝑎0

| = 𝑎1𝑎0 = 0  

 

From equation (6) which is 𝑘2 + 0.5𝑘 − 14 = 0   we find  
∆1= 𝑎𝑛−1 = 𝑎1 = 0.5        > 0   

 

∆2= |
𝑎𝑛−1 𝑎𝑛−3

𝑎𝑛 𝑎𝑛−2
| = |

𝑎1 0
𝑎2 𝑎0

| = 𝑎1𝑎0 = −7     < 0  

 

From equation (7) which is 𝑘2 + 𝑘(0.2𝑝 − 4) = 0  we find 
∆1= 𝑎𝑛−1 = 𝑎1 = 0.2𝑦 − 4        

  

∆2= |
𝑎𝑛−1 𝑎𝑛−3

𝑎𝑛 𝑎𝑛−2
| = |

𝑎1 0
𝑎2 𝑎0

| = 𝑎1𝑎0 = 0   

In this case we will have negative small minors when 𝑝 ≤ 20 . As a result, we have 

the following proposition  

Proposition 2: 

From the solution above at each of equilibrium points that we have, since the values 

of one minor at least is less than zero therefore, the periodontium system (1) exhibits 

instability  

 Lyapunov Function 

 Let the Lyapunov function equation of system (1) as following: 

𝑣(𝐺, 𝑃) =
1

2
(𝑔2 + 𝑝2)    > 0     𝑤ℎ𝑒𝑛   𝐺, 𝑃 > 0   

 By differentiating 𝑣(𝐺, 𝑃) we get: 
𝑣̇(𝐺, 𝑃)  =  𝑔 .  𝑔̇ + 𝑝 . 𝑝̇ =   𝑎𝑔2(1 − 𝑔) − 𝑏𝑔2𝑝 + 𝑐𝑔𝑝2  
If 𝑣̇(𝐺, 𝑃)  < 0  then the periodontium system (1) is stable. This is the stability of 

periodontium system (1) by Lyapunov function. Now, we test the stability at equilibrium 

points: 

𝑣(0,0) = 0 𝑎𝑛𝑑 𝑣̇(0,0) = 0  so, the system is unstable at 𝐸0 = (0,0) 

𝑣(1,0) =
1

2
𝑔2  𝑎𝑛𝑑 𝑣̇(1,0) = 0  so, the system is unstable at 𝐸1 = (1,0) 

𝑣(0, 𝑝) =
1

2
𝑝2  𝑎𝑛𝑑 𝑣̇(0, 𝑝) = 0  so, the system is unstable at 𝐸2 = (0, 𝑃) 

Dissipative 

Let   𝑓1 =
𝑑𝑔

𝑑𝑡
   𝑎𝑛𝑑  𝑓2 =

𝑑𝑝

𝑑𝑡
  

𝐹 =
𝜕𝑓1

𝜕𝑔
+ 

𝜕𝑓2

𝜕𝑝
= 𝑎 − 2𝑎𝑔 − 𝑏𝑝 + 𝑐𝑔 = 𝑎 − 𝑏𝑝 + (𝑐 − 2𝑎)𝑔  

Notice that dissipative does not depend on the parameters only but it also depends 

on the state variables. The periodontium system (1) is dissipative and We can prove our 

word through trace matrix as following: 

∑ Tr(J) =  ∇. (𝑓1, 𝑓2)𝑇 =  
∂f1

𝜕𝑔
+

∂f2

∂p
= 𝑎 − 𝑏𝑝 + (𝑐 − 2𝑎)𝑔 = 𝐹. 

By substitute equilibrium points in 𝐹 , we get the below result 

proposition 3: according to equilibrium points in we find that: 

at 𝐸0 = (0,0)  𝑡ℎ𝑒𝑛 𝐹 = 4 > 0  and the periodontium system (1) is conservative  

at 𝐸1 = (1,0) 𝑡ℎ𝑒𝑛 𝐹 = −0.5 < 0  and the periodontium system (1) is dissipative 

at 𝐸2 = (0, 𝑃) 𝑡ℎ𝑒𝑛 𝐹 = 4 − 0.2𝑝  and the periodontium system (1) will be dissipative 

when 𝑝 ≥ 20 otherwise, it will be conservative. 

NUMERICAL AND GRAPHICAL ANALYSIS 

In this phase, we are able to use numerical simulation to affirm the preceding 

theoretical results and show the dynamic conduct of the chaotic periodontium gadget (1) 
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Trajectories and State-Space 

The trajectories for gingiva and periodontitis will be simulated at initial values 

[𝐺0, 𝑃0] = [0.000001 , 0.000001] and figure1 shows it. While the State-Space of 

periodontium system (1) will be simulated at initial condition [𝐺0, 𝑃0] =

[0.00005 , 0.00005]  as shown in figure2. 

 

Figure 1. Trajectories of periodontium system (1): gingiva and periodontitis over time 

 

Figure 2. State-space for periodontium system (1): periodontitis versus gingiva 

 

Bifurcation Diagram  

Firstly, we will vary the rate of periodontitis in mathematical periodontium model ‘b’ 

in order to observe the bifurcate in gingiva. The bifurcation parameter range at initial 

condition [0.001, 0.001] will be taken at line space (0.0001, 12, 150) for (60) time span. 

Secondly, we will vary the periodontitis parameter ‘c’ at initial condition [0.5, 0.5] and the 

bifurcation parameter range will be taken at line space (1, 5, 300).lastly we will vary the 

growth rate of gingiva ‘a’ at initial condition [1, 1] and the bifurcation parameter range 
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will be taken at line space (3, 6, 200) for (80) time span. The bifurcation diagram for 

periodontium system (1) are shown in figure3, figure4 and figure5 respectively. 

 

Figure 3. Bifurcation diagram for gingiva versus parameter b 

 

Figure 4. Bifurcation diagram for gingiva versus parameter c 
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Figure 5. Bifurcation diagram for gingiva versus parameter a 

 

Lyapunov Exponent and Lyapunov Dimension 

According to the nonlinear chaos concept, the Lyapunov exponents degree the 

exponential costs of divergence and convergence of nearby trajectories in state space of 

the gadget.Thus, according to the parameters values in equation (2) and let the initial 

value [𝐺0, 𝑃0] = [0.1 , 0.00005] the corresponding Lyapunov exponents for the 

periodontium system (1) are: 
𝐿1 = 0.908835       𝑎𝑛𝑑      𝐿2 =  −1.294244  

Therefore, the Lyapunov Dimension of this system is: 

𝐷𝐿 = 1 + 
𝐿1

|𝐿2|
 =  1.7022130   

Thus, as shown in figure 6 the dynamics of Lyapunov exponents, we illustrate that the 

periodontium system (1) is chaotic. 
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Figure 6. Lyapunov exponents for periodontium system (1) 

 

CONTROLLING TECHNIQUES 

In this section, we will use adaptive control method and active control method to 

control the chaotic periodontium system (1).  

Adaptive control technique 

Theoretical findings 

For Stabilizing the chaotic behavior of periodontium system (1). We’ve designed an 

adaptive control law that incorporates the unknown parameter b  

𝐺̇ = 4𝑔(1 − 𝑔) − 𝑏𝑔𝑝 + 𝑢1

𝑃̇ = 3.5 𝑔𝑝 +  𝑢2                    
} … … … … … … … . . (8)  

When 𝑢1 𝑎𝑛𝑑 𝑢2 are the adaptive biological controllers, the adaptive control functions 

are: 

𝑢1 = −4𝑔(1 − 𝑔) + 𝑏̂𝑔𝑝 − 𝜇1𝑔
𝑢2 = −3.5 𝑔𝑝 − 𝜇2𝑝                    

} … … … … … … … … … … … (9)  

Where the constants 𝜇1 𝑎𝑛𝑑 𝜇2 are greater than zero, 𝑏̂  represents the parameter 

estimate of b. by substituting (9) into (8) we obtain 

𝐺̇ = −(𝑏 − 𝑏̂)𝑔𝑝 − 𝜇1𝑔

𝑃̇ =  −𝜇2𝑝                        
} … … … … … … … … … … … . . . (10)  

We define parameter estimation error by:  

℮𝑏 = 𝑏 − 𝑏̂  … … … … … … … … … … … … … … … … . … (11) 

Using (11), the dynamics (10) can be written as 

𝐺̇ = − ℮𝑏 𝑔𝑝 − 𝜇1𝑔

𝑃̇ =  −𝜇2𝑝                  
} … … … … … … … … … … … … . . … (12)  

The Lyapunov approach is applied to derive the update law (12) which is used to 

adjust estimation of parameter b,  

Count the Lyapunov Function 

𝜈(𝐺, 𝑃) =
1

2
[𝑔2 + 𝑝2 + ℮𝑏

2] … … … … … … … … … … . . . (13)  

Which is positive definite function on ℝ3 

Also, Differentiating the parameter estimation errors (11) with respect to time, we get 

℮𝑏
̇ =  − 𝑏̇̂    … … … … … … … … … … … … … … … … … . . (14)  

With above choices (13) and (14), the time derivation of the Lyapunov function along 

the trajectory has the following form: 
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ν̇(G, P) = −μ1𝑔2 − μ2p2 + ℮b (−𝑔2p − ḃ̂) … … … … … … (15)  

In equation (15), we update estimated parameter by: 

ḃ̂ =  −𝑔2p + μ3 ℮b … … … … … … … . . … … … … . (16)  

Where the constant μ3 is greater than zero. 

Now, we substitute (16) in to (15), we get: 

ν̇(G, P) = −μ1𝑔2 − μ2p2 − μ3℮b
2 … … … … … . . … (17)  

Which is negative definite function on ℝ3  

The following result is so obtained by applying roots of characteristic equation, Routh 

stability criterion, Hurwitz stability criterion and Lyapunov stability. 

Proposition 4: the chaotic periodontium system (8) is stabilized for three equilibrium 

points 𝐸0 , 𝐸1, 𝐸2  ∈  ℝ2   by the adaptive biological control law (9) and the update 

estimated parameter law  ḃ̂ =  −𝑔2p + μ3 ℮b  where 𝜇1  , 𝜇2 𝑎𝑛𝑑 μ3  are positive constants 

and the results are shown in tables (4-7) 

 Numerical findings 

The controlled system (12) is simulated with the following initial values: 

[𝐺0, 𝑃0] = [ 0.00005, 0.00005 ] 𝑎𝑛𝑑 [𝜇1, 𝜇2] = [10 , 15]. Figure7 shows controlled 

dynamics of Lyapunov exponents for periodontium system (1). Also, the trajectories of 

the controlled system (12) is simulated at initial condition [𝐺0, 𝑃0] = [ 0.004, 0.004]. 

Figure8 shows the trajectories of the update system (12) after adaptive control, where (i) 

shows trajectories of state variables and (ii) shows Error trajectory goes to zero. From these 

trajectories it is easy to show how effectively the adaptive control law suppress the chaos 

in periodontium system (1). 

Figure 7. Dynamics of Lyapunov exponents after adaptive control 
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(i) 

(ii) 

Figure 8. Trajectories of the update system (12) after adaptive control 

(i) trajectories of state variables over time, (ii) trajectory of estimated error over time 

 

Active control technique 

Theoretical findings 

For Stabilizing the chaotic behavior of periodontium system (1). We’ve designed an 

adaptive control law as follows: 

𝐺̇ = 4𝑔(1 − 𝑔) − 0.2𝑔𝑝 + 𝑢1

𝑃̇ = 3.5𝑔𝑝 + 𝑢2                         
} … … … … … … … … … … … … . (18)  

Where  𝑢1 𝑎𝑛𝑑 𝑢2 are the active feedback controllers, which are needed to be chosen 

such that the trajectory of periodontium system (1) is stabilized. The active control 

functions are: 
𝑢1 = −4𝑔(1 − 𝑔) + 0.2𝑔𝑝 − 𝜇1𝑔
𝑢2 = −3.5 𝑔𝑝 − 𝜇2𝑝                        

} … … … … … … … … … … … … … … … (19)  

Where the constants 𝜇1 𝑎𝑛𝑑 𝜇2 are positive, substituting (19) in to (18), we get: 

𝐺̇ = −𝜇1𝑔 

𝑃̇ = −𝜇2𝑝 
} … … … … … … … … … … … … … … … … … … … … … . … … (20)  

This shows that the dynamics (20) based on roots of characteristic equation, Routh 

stability criterion, Hurwitz stability criterion and Lyapunov stability gives the following 

result. 

Proposition 5: the chaotic periodontium system (18) is stabilized for three equilibrium 

points 𝐸0 , 𝐸1, 𝐸2  ∈  ℝ2  by the active nonlinear controllers (19) where  𝜇1 𝑎𝑛𝑑 𝜇2 are 

positive constants and the results are shown in tables (4-7) 
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 Numerical findings 

The controlled system (20) is simulated with the following initial values: 

 [𝐺0, 𝑃0] = [0.00005, 0.00005] 𝑎𝑛𝑑 [𝜇1, 𝜇2] = [10 , 15]. The controlled dynamics of 

Lyapunov exponents for periodontium system (1) are displayed in Figure9. 

 

Figure 9. Dynamics of Lyapunov exponents after active control 

 

According to the solutions and performance applied above, it is clear that the active 

control law is easier than the adaptive. Although the adaptive control is better due to the 

control parameter that has to be estimated. Lastly, both have controlled the system 

effectively. 

SYSTEM COMPARISON TABLES BEFORE CONTROLLING TECHNIQUES AND AFTER 

Table 4. Eigenvalues for periodontium system (1) before controlling techniques and 

after 

Equilibrium 

points 

Before control After adaptive 

control 

After active 

control 

 
𝑬𝟎 = (𝟎, 𝟎) 

𝑘1 = 0 
𝑘2 = 4 

unstable 

𝑘1 = −15 
𝑘2 = −10 

stable 

𝑘1 = −15 
𝑘2 = −10 

stable 

 
𝑬𝟏 = (𝟏, 𝟎) 

𝑘1 = −4 
𝑘2 = 3.5 

unstable 

𝑘1 = −15 
𝑘2 = −10 

stable 

𝑘1 = −15 
𝑘2 = −10 

stable 

 
𝑬𝟐 = (𝟎, 𝑷) 

𝑘1  =  0 
𝑘2 = 4 − 0.2𝑝 

unstable 

𝑘1,2 = −15 

 

stable 

𝑘1 = −15 
𝑘2 = −10 

stable 

 

Table 5. Routh-Array of periodontium system (1) before controlling techniques and after 

Equilibrium 

points 

k Before control k After adaptive control k After active 

control 

 
𝑬𝟎 = (𝟎, 𝟎) 

𝑘2 
𝑘1 
𝑘0 

  1                    0 

- 4                    0 

  0                    0 

unstable 

𝑘2 
𝑘1 
𝑘0 

 1                                   150 

25                                      0 

150                                    0 

stable 

𝑘2 
𝑘1 
𝑘0 

 1                   150 

25                      0 

150                    0 

stable 

 
𝑬𝟏 = (𝟏, 𝟎) 

𝑘2 
𝑘1 
𝑘0 

 1                   -14 

0.5                    0 

-14                    0 

𝑘2 
𝑘1 
𝑘0 

 1                                      150 

25                                         0 

150                                       0 

𝑘2 
𝑘1 
𝑘0 

 1                   150 

25                      0 

150                    0 
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unstable stable stable 

 
𝑬𝟐 = (𝟎, 𝑷) 

𝑘2 
𝑘1 
𝑘0 

 1                      0 

0.2p -4             0 

0                       0 

unstable 

𝑘2 
𝑘1 
𝑘0 

1                       0.075𝑝 + 150 

0.005𝑝 + 25                         0 

0.075𝑝 + 150                       0 

stable 

𝑘2 
𝑘1 
𝑘0 

 1                   150 

25                      0 

150                    0 

stable 

 

Table 6. Hurwitz criterion of periodontium system (1) before controlling techniques 

and after 

Equilibrium 

points 

Before control After adaptive control After active 

control 

 
𝑬𝟎 = (𝟎, 𝟎) 

∆1= −4  
∆2= 0  

unstable 

∆1= 25  
∆2= 3750  

stable 

∆1= 25  
∆2= 3750  

stable 

 
𝑬𝟏 = (𝟏, 𝟎) 

∆1= 0.5  
∆2= −7  

unstable 

∆1= 25  
∆2= 3750  

stable 

∆1= 25  
∆2= 3750  

stable 

 
𝑬𝟐 = (𝟎, 𝑷) 

∆1= 0.2𝑝 − 4  
∆2= 0  

unstable 

∆1= 0.005𝑝 + 25  
∆2= 0.000375𝑝2 + 2.625𝑝 + 3750 

stable 

∆1= 25  
∆2= 3750  

stable 

 

Table 7. Lyapunov Function of periodontium system (1) before controlling techniques 

and after 

Equilibrium 

points 

Before control After adaptive control After active control 

 
𝑬𝟎 = (𝟎, 𝟎) 

𝑣 = 0  
𝑣̇ = 0  

unstable 

𝑣 = 0.0000125  
𝑣̇ = −0.0005  

stable 

𝑣 = 0  
𝑣̇ = 0  

stable 

 
𝑬𝟏 = (𝟏, 𝟎) 

𝑣 =
1

2
𝑔2   

𝑣̇ = 0  

unstable 

𝑣 = 0.5000125  
𝑣̇ = −10.0005  

stable 

𝑣 =
1

2
  

𝑣̇ = −10  

stable 

 
𝑬𝟐 = (𝟎, 𝑷) 

𝑣 =
1

2
𝑝2  

𝑣̇ = 0  

unstable 

𝑣 =
1

2
[𝑝2 + 0.000025  

𝑣̇ = −15𝑝2 − 0.0005  
stable 

𝑣 =
1

2
𝑝2  

𝑣̇ = −15𝑝2  
stable 

 

4. Conclusion 

We believe that it is critical to preserve the dynamics in the favored degree so that the 

oral plants continue to be secure and stable for this purpose we tried to analyze the 

equilibrium points and the situations for the steadiness of the equilibria. In the 

periodontium model (1) observed three equilibrium factors, E_0=(0,0) is the extinction of 

populations. From organic factor of view it is superior periodontitis, the alveolar bone 

around the tooth is destroyed leading to enamel loosening and eventual tooth loss.𝐸1 =

(1,0) is the equilibrium with periodontitis extinct and the last equilibrium point 𝐸2 =

(0, 𝑝) is the equilibrium with gingiva extinct which also means the advanced periodontitis. 

After studying this pathological case and concluding that the periodontium system (1) is 

in dissipative, bifurcation and unstable state, where the stability was tested using four 

methods: the roots of characteristic-equation, the Routh criterion, the Hurwitz criterion 

and Lyapunov Function. We proceeded to treat the periodontium system (1) using 

adaptive control technique and active control technique. The controlling was successful, 

We suppressed the periodontitis and effectively maintained the gingiva in wholesome 

kingdom. We have included comparison tables for all observe effects before and after 

control. Finally, using mathematical fashions in the subject of periodontology could 

permit the researchers to expect the pattern of hobby and the response circumstance in 

periodontium systems. 
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