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Abstract: Clinical data often contain outliers and irrelevant predictors that can distort inference and 

reduce the reliability of traditional regression methods. To address this issue, we propose a robust 

Bayesian variable selection framework by integrating composite quantile regression with a 

reciprocal LASSO prior. The method accommodates heavy-tailed errors and performs simultaneous 

coefficient estimation and sparsity enforcement.We evaluate the proposed model through extensive 

simulation studies under contamination scenarios and compare it with classical and Bayesian 

LASSO-based quantile regression methods. The model is further applied to systolic blood pressure 

data from the NHANES 2017–2018 survey to identify key lifestyle and health-related predictors. 

Results show that the proposed method outperforms competing approaches in terms of predictive 

accuracy, robustness to outliers, and variable selection stability. 

Keywords: Bayesian Quantile Regression, Reciprocal LASSO, Composite Likelihood, Outlier 

Robustness, Variable Selection, NHANES Data, Systolic Blood Pressure 

1. Introduction 

Accurate modeling of clinical outcomes is essential for understanding the impact of 

lifestyle and demographic factors on human health. One common challenge in clinical data 

analysis is the presence of outliers and noise, which can significantly distort parameter 

estimates and variable selection results when using traditional regression models. In 

particular, systolic blood pressure (SBP), a critical indicator of cardiovascular health, is 

influenced by various risk factors such as obesity, smoking, physical inactivity, and 

metabolic conditions. These relationships are often complex, nonlinear, and prone to 

measurement errors or contamination. 

Classical regression methods, including ordinary least squares and standard 

quantile regression, are highly sensitive to outliers and may fail to capture sparse signal 

structures in high-dimensional settings. This limitation calls for robust and flexible 

approaches capable of performing simultaneous estimation and variable selection under 

uncertainty and noise. 

Bayesian regression frameworks provide a principled solution by incorporating 

prior beliefs and enabling full probabilistic inference. Among these, regularization-based 

priors such as the LASSO and its extensions have gained popularity for inducing sparsity. 

However, classical priors may not perform adequately when the data are heavily 

contaminated or the signal-to-noise ratio is low. To address this, the current study 

proposes a robust Bayesian approach based on composite quantile regression and a 
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reciprocal LASSO prior, which is designed to stabilize estimation and enhance variable 

selection in the presence of outlier-contaminated clinical data. 

This research focuses on modeling SBP as a function of lifestyle and health-related 

variables using the proposed Bayesian reciprocal LASSO model. The methodology is 

evaluated through simulation studies and applied to real data from the NHANES 2017–

2018 survey to assess its predictive performance and variable selection capabilities. 

2. Materials and Methods 

2.1 Model Specification 

Let 𝑦𝑖 ∈ 𝑁0 denote the non-negative count response for observation 𝑖, and let 𝑥𝑖 =

(𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑝)⊤ ∈ 𝑅𝑝 represent the associated vector of predictors. Classical count models, 

such as Poisson regression, often fail to handle over dispersion or skewness effectively. To 

overcome these limitations, we adopt a latent-variable formulation within a Bayesian 

composite quantile regression framework (Koenker and Bassett, 1978; Sriram et al., 2013). 

We assume the existence of a latent continuous variable 𝑧𝑖, defined as: 

𝑧𝑖 = 𝑥𝑖
⊤𝛽 + 𝜀𝑖  

where 𝛽 ∈ 𝑅𝑝 is the vector of regression coefficients, and 𝜀𝑖 ∼ 𝐴𝐿𝐷(0, 𝜎, 𝜏) follows an 

Asymmetric Laplace Distribution centered at zero with scale parameter 𝜎 > 0 and quantile 

level 𝜏 ∈ (0,1) (Yu and Moyeed, 2001; Kozumi and Kobayashi, 2011). The observed count 

outcome 𝑦𝑖  is treated as a rounded or thresholded function of 𝑧𝑖, such as: 

𝑦𝑖 = 𝑚𝑎𝑥 (0, 𝑅𝑜𝑢𝑛𝑑(𝑧𝑖))  

This transformation connects the continuous latent space to the discrete count 

responses and enables flexible modeling of skewed and heteroskedastic outcomes. To 

improve robustness and efficiency, we extend the model to include multiple quantile levels 

𝜏𝑘 ∈ (0,1), 𝑘 = 1, … , 𝐾, forming the basis of composite quantile regression (Yang et al., 2016; 

Alhamzawi, 2020). The corresponding model becomes: 

𝑧𝑖
(𝑘)

= 𝑥𝑖
⊤𝛽 + 𝜀𝑖

(𝑘)
, 𝜀𝑖

(𝑘)
∼ 𝐴𝐿𝐷(0, 𝜎, 𝜏𝑘)  

This approach facilitates inference across a range of conditional quantiles and 

provides robustness to outliers and model misspecification. 

2.2 Composite Quantile Likelihood 

In the composite quantile regression (CQR) framework, instead of modeling a single 

conditional quantile, we simultaneously estimate a set of quantiles 𝜏1, 𝜏2, … , 𝜏𝐾   to capture 

a broader view of the response distribution. Each quantile level contributes information 

about a different part of the conditional distribution, enhancing robustness and efficiency 

(Koenker and Bassett, 1978; Zou and Yuan, 2008). 

To formalize this, let the asymmetric Laplace distribution (ALD) be used as the 

working likelihood for each quantile level 𝜏𝐾. The density of the ALD at level 𝜏𝐾with scale 

𝜎 and location 𝜇𝑖 = 𝑥𝑖
⊤𝛽  is given by: 

𝑓(𝑦𝑖 ∣ 𝑥𝑖 , 𝛽, 𝜎, 𝜏𝑘) =
𝜏𝑘(1 − 𝜏𝑘)

𝜎
𝑒𝑥𝑝 (−𝜌𝜏𝑘

(
𝑦𝑖 − 𝜇𝑖

𝜎
))  

where 𝜌𝜏(𝑢) = 𝑢(𝜏 − I(𝑢 < 0)) is the quantile check function (Yu and Moyeed, 2001). 

This formulation connects quantile regression to a likelihood-based framework via the 

ALD and facilitates Bayesian estimation. 

The composite quantile likelihood (CQL) across all 𝐾 quantile levels is constructed 

by multiplying the individual ALD likelihoods over all observations and quantiles: 

𝐿(𝛽, 𝜎 ∣ 𝑦, 𝑋) = ∏ ∏
𝜏𝑘(1 − 𝜏𝑘)

𝜎
𝑒𝑥𝑝 (−𝜌𝜏𝑘

(
𝑦𝑖 − 𝑥𝑖

⊤𝛽

𝜎
))

𝑛

𝑖=1

𝐾

𝑘=1

  

Taking the logarithm of the likelihood gives the composite quantile log-likelihood: 
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𝑙𝑜𝑔 𝐿(𝛽, 𝜎) = −𝑛𝐾𝑙𝑜𝑔 𝜎 + ∑ ∑ 𝑙𝑜𝑔 (𝜏𝑘(1 − 𝜏𝑘)) − ∑ ∑ 𝜌𝜏𝑘
(
𝑦𝑖 − 𝑥𝑖

⊤𝛽

𝜎
)

𝑛

𝑖=1

𝐾

𝑘=1

𝑛

𝑖=1

𝐾

𝑘=1

  

This composite loss function benefits from averaging information across multiple 

quantile levels, leading to more stable estimation especially under asymmetric error 

distributions or contamination by outliers (Yang et al., 2016). 

2.3 Prior Specification with Reciprocal LASSO 

To perform variable selection and shrinkage simultaneously within the Bayesian 

framework, we impose a sparsity-inducing prior on the regression coefficients 𝛽 =

(𝛽1, … , 𝛽𝑝)⊤. In this study, we adopt the Reciprocal LASSO prior, a non-convex penalty that 

provides stronger shrinkage on small coefficients and encourages sparsity more 

aggressively than traditional LASSO (Song and Liang, 2017). 

For each regression coefficient 𝛽𝑗, the prior is defined as: 

𝜋( 𝛽𝑗 ∣ 𝜆) ∝ 𝑒𝑥𝑝 (−𝜆 ⋅
1

∣ 𝛽𝑗 ∣
)  

where 𝜆 > 0  is the global shrinkage parameter that controls the intensity of 

penalization. The reciprocal penalty 
1

∣𝛽𝑗∣
 increases sharply near zero, enforcing near-zero 

estimates more strongly than the absolute value penalty in LASSO.  

To complete the hierarchical model, we place a Gamma prior on λ : 

𝜆 ∼ 𝐺𝑎𝑚𝑚𝑎(𝑎𝜆 , 𝑏𝜆)  

with shape and rate parameters 𝑎𝜆, 𝑏𝜆 > 0 , allowing the data to inform the degree of 

global shrinkage. This introduces adaptivity into the model, as 𝜆 can scale the penalty 

based on the sparsity level of the data. 

We also place an inverse-gamma prior on the scale parameter 𝜎 of the asymmetric 

Laplace distribution to account for heteroskedasticity in the residuals: 

𝜎 ∼ 𝐼𝑛𝑣𝑒𝑟𝑠𝑒 − 𝐺𝑎𝑚𝑚𝑎(𝑎𝜎 , 𝑏𝜎)  

The complete set of priors for 𝛽, 𝜆, 𝜎 defines a flexible Bayesian hierarchy that 

supports robust estimation and automatic variable selection in high-dimensional settings. 

Compared to the Laplace prior used in Bayesian LASSO (Park and Casella, 2008), the 

reciprocal LASSO induces a sharper posterior mode at zero and flatter tails, offering 

enhanced discrimination between relevant and irrelevant predictors. 

2.4 Posterior Distribution 

The full Bayesian model combines the composite quantile likelihood with the 

reciprocal LASSO prior to define the joint posterior distribution over the model parameters 

𝛽, 𝜆, 𝜎. Using the composite quantile likelihood derived in Section 2.2 and the priors 

defined in Section 2.3, the unnormalized posterior density is given by: 

𝑝(𝛽, 𝜆, 𝜎 ∣ 𝑦, 𝑋) ∝ 𝐿(𝛽, 𝜎 ∣ 𝑦, 𝑋) ⋅ 𝜋(𝛽 ∣ 𝜆) ⋅ 𝜋(𝜆) ⋅ 𝜋(𝜎)  

Substituting the respective expressions, we obtain: 

𝑝(𝛽, 𝜆, 𝜎 ∣ 𝑦, 𝑋) ∝ ∏ ∏
𝜏𝑘(1 − 𝜏𝑘)

𝜎
𝑒𝑥𝑝 (−𝜌𝜏𝑘

(
𝑦𝑖 − 𝑥𝑖

⊤𝛽

𝜎
))

𝑛

𝑖=1

𝐾

𝑘=1

⋅ ∏ 𝑒𝑥𝑝 (−𝜆 ⋅
1

∣ 𝛽𝑗 ∣
) ⋅ 𝜆𝑎𝜆−1𝑒−𝑏𝜆𝜆 ⋅ 𝜎−𝑎𝜎−1𝑒−𝑏𝜎/𝜎

𝑝

𝑗=1

  

This formulation captures three key components: 

The likelihood contribution from the asymmetric Laplace densities at multiple 

quantile levels. The reciprocal LASSO prior on each 𝛽𝑗, enforcing strong sparsity through 

a non-convex penalty. The hyperprior terms on 𝜆   and 𝜎  , allowing adaptive regularization 

and scale estimation. 
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The posterior is analytically intractable due to the non-conjugate reciprocal LASSO 

prior and the lack of closed-form expressions in the ALD-based composite likelihood. As 

a result, posterior inference must be performed via Markov Chain Monte Carlo (MCMC) 

techniques, which are detailed in the next section. 

This hierarchical posterior formulation enables joint estimation, regularization, and 

uncertainty quantification within a unified Bayesian framework, offering robustness to 

outliers and model misspecification across multiple quantile levels. 

2.5 Posterior Computation 

Given the complexity of the posterior distribution arising from the combination of 

the asymmetric Laplace likelihood and the reciprocal LASSO prior, direct analytical 

inference is not feasible. Therefore, we employ a Markov Chain Monte Carlo (MCMC) 

strategy to sample from the posterior distribution 𝑝(𝛽, 𝜆, 𝜎 ∣ 𝑦, 𝑋) and estimate all 

parameters jointly. 

To implement efficient MCMC, we exploit the fact that the asymmetric Laplace 

distribution can be represented as a location-scale mixture of normals (Kozumi and 

Kobayashi, 2011), which allows us to reformulate the model as conditionally Gaussian. 

Specifically, for each quantile level 𝜏𝑘 , the ALD error term 𝜀𝑖
(𝑘)

 can be expressed 

hierarchically as: 

𝜀𝑖
(𝑘)

∼ 𝜃𝑖
(𝑘)

+ √𝜎𝜃𝑖
(𝑘)

⋅ 𝑣𝑖
(𝑘)

   

where 𝜃𝑖
(𝑘)

∼ 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(𝜎) and 𝑣𝑖
(𝑘)

∼N(0,1). This representation enables the 

introduction of latent variables 𝜃𝑖
(𝑘)

 into the sampling scheme, resulting in conditionally 

conjugate updates for 𝛽 and 𝜎 given the mixture components. 

The MCMC algorithm proceeds iteratively through the following key steps: 

Update latent variables 𝜃𝑖
(𝑘)

 from their full conditional exponential distributions. 

Update 𝛽 from a Metropolis-Hastings step, due to the non-conjugacy introduced by 

the reciprocal LASSO prior. 

Update 𝜆 using a Gibbs or slice sampling step from its Gamma full conditional. 

Update σ from its inverse-gamma full conditional. 

The reciprocal LASSO prior introduces a non-convex and non-differentiable 

component, which makes the full conditional of 𝛽𝑗   intractable. Therefore, for each 𝛽𝑗, we 

implement a Metropolis-Hastings sampler using a normal proposal distribution with 

adaptive tuning. This ensures adequate exploration of the posterior while preserving 

sparsity. 

We run the MCMC chain for a sufficient number of iterations with appropriate burn-

in and thinning to ensure convergence and reduce autocorrelation. Convergence 

diagnostics such as trace plots and the Gelman Rubin statistic are monitored to assess 

mixing and stationarity. 

This sampling approach allows for efficient and robust inference of both model 

parameters and hyperparameters, even in the presence of high-dimensional predictors and 

contaminated count data. 

2.6 Model Evaluation Criteria 

To assess the predictive accuracy, robustness, and overall performance of the 

proposed Bayesian composite quantile regression model with reciprocal LASSO prior, we 

adopt several model evaluation metrics. These criteria are designed to capture both in-

sample fit and out-of-sample predictive ability, especially under conditions of non-

normality and outlier contamination. 

Mean Squared Error (MSE): The MSE is used to evaluate the average squared 

difference between observed responses and posterior predictive means: 
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MSE =  
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)

2

𝑛

𝑖=1

 

where 𝑦̂𝑖 is the posterior predictive mean for observation 𝑖. A lower MSE indicates 

better point prediction performance. 

Mean Absolute Error (MAE): The MAE captures the average absolute deviation 

between predictions and observations: 

MAE =  
1

𝑛
∑ |𝑦𝑖 − 𝑦̂𝑖|

𝑛

𝑖=1

 

MAE is less sensitive to large outliers and complements MSE in assessing robustness. 

Leave-One-Out Cross-Validation (LOO-CV): We implement approximate Bayesian 

leave-one-out cross-validation using Pareto-smoothed importance sampling (PSIS-LOO) 

to estimate the expected log predictive density: 

ELPD𝐿𝑂𝑂 =  ∑ 𝑙𝑜𝑔 𝑝(𝑦𝑖 ∣ 𝑦−𝑖) 

𝑛

𝑖=1

 

Higher ELPD values indicate better generalization to unseen data. LOO-CV is 

particularly suitable in Bayesian settings due to its full use of the posterior distribution 

(Vehtari et al., 2017). We assess model adequacy by simulating replicated datasets 𝑦𝑖
𝑟𝑒𝑝 

from the posterior predictive distribution and comparing them to the observed data. 

Graphical tools such as posterior predictive intervals and predictive histograms are used 

to diagnose lack of fit or systematic bias. The 95% posterior credible intervals for model 

parameters 𝛽  and predictions 𝑦̂𝑖 are examined for both precision (narrow intervals) and 

accuracy (coverage of observed values). This supports uncertainty quantification and 

model reliability.  

Together, these evaluation criteria provide a comprehensive assessment of the 

proposed model’s robustness, sparsity, and predictive accuracy under varying data 

conditions, including heavy-tailed errors and outlier contamination. 

3. Results and Discussion 

Simulation Study 

To evaluate the performance of the proposed Bayesian reciprocal LASSO composite 

quantile regression model, we conduct a simulation study under controlled conditions 

with varying sample sizes and contamination levels. We generate synthetic count data 

using a latent continuous model that mimics real-world sparsity and overdispersion. The 

data-generating process is as follows: 

Sample sizes: n ∈ {50,100,200} 

Number of predictors: p = 20  

True non-zero coefficients: First 5 elements of β0  set to {1.2, −1.0,0.8,0.6, −0.5}, 

remaining 15 set to 0. 

Design matrix: X ∼ N(0, Σ), where Σij = 0.5∣i−j∣  

 Latent model:zi = xi
⊤β0 + εi  with εi ∼ ALD(0, σ = 1, τ = 0.5)  

Observed response: yi = max (0, Round(zi))  

To assess robustness, we introduce contamination in 15% of the data by adding a 

large noise term to the latent variable ziin a randomly selected subset: 

zi
cont = zi + δi, δi ∼ Uniform(5,10)  

This produces extreme count values, mimicking real-world outliers or heavy-tailed 

errors. 

We compare the proposed method to two benchmarks: Bayesian LASSO CQR and 

Standard (non-Bayesian) Composite Quantile Regression.  All models are implemented 
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under the same quantile levels τ ∈ {0.1,0.3,0.5,0.7,0.9}, using 100 replications for each 

setting. 

For each method and replication, we compute: Mean Squared Error (MSE) of 

coefficient estimates . True Positive Rate (TPR) and False Discovery Rate (FDR).  Mean 

Absolute Error (MAE) of predictions. ELPD from approximate Leave-One-Out Cross 

Validation . Coverage rate of 95% posterior intervals. 

 

Table 1. Estimation Performance under n=100 and 15% Contamination. 

Method MSE (β̂) TPR FDR MAE ELPD 

Proposed: B-RecLASSO CQR 0.082 0.97 0.11 0.91 -132.7 

Bayesian LASSO CQR 0.135 0.92 0.18 1.08 -148.2 

Classical CQR 0.217 0.75 0.26 1.34 -172.5 

 

Table 1 presents a comparative summary of the estimation and prediction 

performance of three models under a sample size of n=100   and a contamination level of 

15%. The proposed Bayesian composite quantile regression model with reciprocal LASSO 

(B-RecLASSO CQR) consistently outperforms both the Bayesian LASSO CQR and the 

classical CQR models across all evaluation metrics. 

The proposed model achieves the lowest Mean Squared Error (MSE = 0.082) in 

estimating regression coefficients, indicating superior accuracy in recovering the true 

parameter values. It also demonstrates the highest True Positive Rate (TPR = 0.97), 

reflecting its strong ability to correctly identify relevant predictors. At the same time, it 

maintains a low False Discovery Rate (FDR = 0.11), suggesting effective sparsity control 

and minimal inclusion of irrelevant variables. 

In terms of predictive performance, the model yields the lowest Mean Absolute Error 

(MAE = 0.91), which confirms its robustness in producing reliable predictions even under 

outlier contamination. Furthermore, the proposed method exhibits the best generalization 

capability, as indicated by the highest expected log predictive density (ELPD = –132.7) 

based on leave-one-out cross-validation. 

 

 

Figure 1. Posterior Intervals and True Coefficients. 

 

Figure 1 illustrates the posterior means and 95% credible intervals for the 20 

regression coefficients estimated by the proposed Bayesian reciprocal LASSO composite 

quantile regression model. The red crosses represent the true values of the coefficients, 

where only the first five predictors are truly non-zero. 
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The plot shows that the proposed model accurately estimates the non-zero 

coefficients (indices 1–5), with posterior means closely aligned with their true values and 

relatively narrow credible intervals, indicating high estimation precision. For the 

remaining irrelevant predictors (indices 6–20), the posterior means are effectively shrunk 

toward zero, and the credible intervals remain narrow and centered around zero, reflecting 

the model’s ability to distinguish between relevant and irrelevant variables. 

This pattern confirms that the reciprocal LASSO prior induces effective sparsity and 

robustness, yielding reliable variable selection and uncertainty quantification even in the 

presence of contamination. 

Real Data Analysis 

This section presents the application of the proposed Bayesian Reciprocal LASSO 

Composite Quantile Regression model to real clinical data from the NHANES 2017–2018 

survey. The analysis focuses on modeling systolic blood pressure (SBP) based on various 

lifestyle and demographic factors. The evaluation incorporates insights from the 

simulation study, particularly regarding the model’s robustness to outliers and irrelevant 

predictors. 

The dataset is extracted from the National Health and Nutrition Examination Survey 

(NHANES), cycle 2017–2018. After preprocessing and removing records with missing 

values, the final sample includes 900 individuals. The variables used in the analysis are: 

Response Variable is Systolic Blood Pressure (SBP) , and Predictor Variables: 

1. Body Mass Index (BMI) 

2. Age 

3. Gender 

4. Smoking Status 

5. Physical Activity Level 

6. Diabetes Status 

7. Race/Ethnicity 

8. Cholesterol Level 

9. Alcohol Consumption 

10. Dietary Quality Score 

All continuous variables were standardized prior to analysis, and categorical 

variables were appropriately encoded as binary indicators. 

We estimate the model using Bayesian MCMC techniques at multiple quantile levels 

T ∈ {0.1,0.3,0.5,0.7,0.9} . The reciprocal LASSO prior is applied to the coefficient vector β  

to enforce sparsity. The MCMC was run for 10,000 iterations, discarding the first 5,000 as 

burn-in and thinning every 10 samples. 

 

Table 2. Predictive Performance for SBP (n = 900). 

Model MAE MSE ELPD 

B-RecLASSO CQR (Proposed) 3.46 18.12 -2301.4 

Bayesian LASSO CQR 3.87 20.85 -2417.2 

Classical CQR 4.10 24.03 -2634.8 

 

Table 2 presents the predictive performance of three competing models applied to 

the NHANES real clinical dataset, where systolic blood pressure (SBP) is the response 

variable. The performance is evaluated using three criteria: Mean Absolute Error (MAE), 

Mean Squared Error (MSE), and Expected Log Predictive Density (ELPD) based on leave-

one-out cross-validation. 
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The proposed Bayesian Reciprocal LASSO Composite Quantile Regression model 

achieves the lowest MAE (3.46) and MSE (18.12), indicating its superior accuracy in 

predicting SBP. Furthermore, it obtains the highest ELPD (–2301.4), which reflects better 

out-of-sample predictive capacity compared to the Bayesian LASSO CQR (ELPD = –2417.2) 

and classical CQR (ELPD = –2634.8). 

These results are consistent with the simulation findings, confirming that the 

proposed model maintains strong robustness and generalization in the presence of high-

dimensional predictors and potential outliers. Its ability to balance sparsity and flexibility 

makes it particularly effective in clinical prediction settings. 

 

 

Figure 2. Posterior  Intervals SBP Predictors. 

 

Figure 2 illustrates the posterior means and 95% credible intervals of the regression 

coefficients for ten predictors of systolic blood pressure (SBP), as estimated by the 

proposed Bayesian Reciprocal LASSO Composite Quantile Regression model. Among the 

predictors, BMI, age, smoking status, and diabetes status show clearly positive effects on 

SBP, with credible intervals that do not include zero indicating strong and statistically 

significant associations. These variables are consistently identified as influential and are 

supported by clinical literature. 

In contrast, predictors such as gender, alcohol consumption, diet score, and 

race/ethnicity have posterior intervals centered near zero, suggesting weak or negligible 

influence on SBP within this dataset. The reciprocal LASSO prior effectively shrinks these 

coefficients, reinforcing sparsity in the model. This outcome confirms the model's ability 

to differentiate between relevant and irrelevant predictors while providing uncertainty 

quantification, which is critical in clinical risk assessment. The behavior observed here 

aligns with the simulation findings, where the proposed method showed high accuracy 

and robustness under variable contamination. 

4. Conclusion 

This study introduced a robust Bayesian framework for modeling clinical data with 

potential outliers and irrelevant predictors by combining composite quantile regression 

with a reciprocal LASSO prior. Through both simulation experiments and real-world 

analysis of NHANES data, the proposed model demonstrated superior performance in 

terms of prediction accuracy, robustness, and sparsity compared to standard Bayesian and 

classical quantile regression methods. 

The simulation results confirmed that the model effectively distinguishes relevant 

variables while suppressing noise, even under contamination. In the real data application, 

key risk factors such as BMI, age, smoking, and diabetes status were correctly identified as 

significant predictors of systolic blood pressure, while less informative variables were 
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consistently shrunk toward zero. These findings support the practical value of the 

reciprocal LASSO prior in improving model interpretability and generalization in clinical 

risk modeling. 

The proposed approach offers a promising direction for robust variable selection in 

biomedical research, particularly when dealing with high-dimensional and noisy data. 

Future work may extend this framework to longitudinal or hierarchical health data and 

explore other flexible priors within the composite quantile regression setting. 
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