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Abstract: Bayesian estimation requires sampling from the posterior distributions. Where, the prior 

distributions are play a vital role in obtaining the simplifying the derivation of full conditional 

distributions, making Gibbs sampling algorithms more efficient. using the Laplace prior distribution 

(also known as the Double Exponential prior) is indeed a great choice in Bayesian Tobit quantile  

regression for both variable selection and parameter estimation simultaneously. The Laplace prior 

has become popular in regression models because of its ability to induce sparsity in the estimated 

coefficients, which is particularly beneficial for variable selection. However, directly using the 

Laplace prior distribution is a very complex task when building the hierarchical model. To overcome  

this issue, a set of transformations of the Laplace prior distribution has been used, which provide us 

with hierarchical models with more efficiency. In this paper, we will compare the transformations of 

the Laplace prior distribution that provide us with efficient estimators capable of generalization. 

Keywords: Prior Distribution, Tobit Quantile Regression, Bayesian 

1. Introduction 

Tobit quantile regression (TQR) model is particularly useful when dealing with 

censored response variables while analyzing their conditional quantiles.  Where, TQR 

model provides a more detailed view of the distribution of the dependent variable by 

estimating relationships at different quantile levels 𝜏𝜖(0,1). (TQR)model keep of  main 

features  of both the Tobit regression model (𝑦 = max(0, 𝑦𝑖
∗) , 𝑦𝑖

∗ = 𝑥𝛽 + 𝜖𝑖 ,        𝑖 =

1,2, … … . . 𝑛 ), which focuses on censoring, and the quantile regression model, which 

focuses the estimation of conditional quantiles 𝑄𝑦𝑖|𝑥𝑖
(𝜏) = 𝐹𝑦𝑖|𝑥𝑖

−1 (𝜏). Recently, the 

regularization process has become popular with regression models [1], [2]. Now, 

combining regression models with these methods provides us with good models for 

parameter estimation and high predictive capability. Some Tobit Quantile Regression 

models include numerous explanatory variables, each exhibiting different relationships 

with the left-censored response variable [3], [4], [5]. However, some of these variables 

contribute minimally to the model, making their inclusion unjustified. Identifying weak 

explanatory variables in this context is particularly challenging. Variable selection (VS) is 

a valuable statistical tool for addressing this issue. It plays a crucial role in constructing 

regression models by effectively identifying relevant explanatory variables while 

excluding irrelevant ones [6], [7]. Recently, researchers have introduced innovative 

methods to enhance the implementation of variable selection in regression models. These 

methods offer desirable properties and perform variable selection efficiently, as the 
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process is automated and requires minimal time. One of the most important methods is 

LASSO (Least Absolute Shrinkage and Selection Operator). Researchers in the field of 

variable selection under Bayesian theory have primarily focused on the Laplace prior 

distribution due to its advantageous properties. This distribution aids the variable 

selection process by shrinking the estimates of insignificant explanatory variables to 

exactly zero. In this paper will involve an analysis and comparison of three distinct 

transformations applied to the prior Laplace distribution. We aim to determine which 

transformation is the most effective regarding efficiency and practical applicability [8], [9]. 

First transformation is Scale Mixture of Normals (SMN) that  proposed by ((Andrews and 

Mallows)). Many researchers used this transformations with hierarchical Bayesian tobit 

quantile regression model such as, (Park & Casella), (R.Alhamzawi) and  Fadel Hamid 

Hadi Alhusseini. Second transformation is Scale Mixture of uniform (SMU) that  proposed 

by(Mallick, H. and Yi, N). The our paper has been organized as follows: 

in Section 2, we present tobit quantile regression model briefly .In Section 3, we 

present the complete hierarchical Bayesian model, detailing likelihood specifications and 

prior distributions for each parameters [10]. Section 4, derives the full conditional  

posterior distribution, in section 5 ,introduced application side, including simulation 

studies and  real-world data. In section 6   concludes important conclusion and future 

papers . 

Tobit Quantile Regression 

The Tobit model introduced by (James Tobin in ), is a type of regression model 

specifically designed for dealing with right - or left-censored dependent variables. It is 

especially helpful when the data is censored at a specific threshold (usually zero), 

indicating that values past that point are not observed or constrained. The Tobit model is 

dealing with latent variable  𝑦𝑖
∗ which is based on the following  linear regression model: 

𝑦𝑖 = max(𝑦𝑖
∗, 0)                                                       (1) 

Where 𝑦 is censored independent variable (observed variable), 𝑦𝑖
∗ is (latent variable) 

it  have  following mathematical model: 
𝑦𝑖

∗ = 𝑋𝛽 + 𝑢𝑖  , (𝑖 = 1,2, … . . 𝑛)                           (2) 
where 𝑢𝑖~𝑁(0, 𝜎2). 

The latent variable 𝑦𝑖
∗ is observed 𝑖𝑓 𝑦𝑖

∗ > 0  𝑖𝑛 𝑡ℎ𝑖𝑠 𝑐𝑎𝑠𝑒  𝑦𝑖 = 𝑦𝑖
∗  and the latent 

variable 𝑦𝑖
∗ isn’t observed  𝑖𝑓 𝑦𝑖

∗ ≤ 0 𝑖𝑛 𝑡ℎ𝑖𝑠 𝑐𝑎𝑠𝑒  𝑦𝑖 = 0  (Amemiya, T. (1984)). Through its 

specifications, the Tobit regression model is highly flexible and useful in handling data 

constrained at the zero threshold. Where, this model accurately describes the impact 

relationship between the constrained response variable and a set of independent 

variables(Cameron, A. C., & Trivedi, P. K ). The Tobit regression model  depend on more 

normality assumptions for consistency and robust inference. These assumptions of 

normality are linked to the framework of latent variables and the structure of random 

errors, such as random errors is distributed normal distribution 𝑢𝑖~𝑁(0, 𝜎2), 

Homoskedasticity,  autocorrelation and the Tobit regression model is highly sensitive to 

outliers values (Yohai, V. J.,  et al ), and other problems. Tobit quantile regression (Powell) 

is a sophisticated statistical method aimed at overcoming the shortcomings of the 

conventional Tobit regression model. Tobit Q Reg offers a more comprehensive view by 

estimating the link between the censored response variable and a collection of explanatory 

variables across various quantile levels. Due to its robust modeling of censored data and 

ability to capture heterogeneous effects across quantiles, Tobit Quantile Regression has 

gained significant traction in various disciplines. , Such as Economics and  Labor 

Studies(Buchinsky, M ), Medical Expenditures (Kowalski, A), Survival Analysis (Portnoy, 

S) and Environmental Science (Wang, H. J., and Fygenson, M) etc., the Tobit Q Reg can be 

expressed as: 

 

𝑦𝑖 = max(0, 𝑦𝑖
∗),      𝑤ℎ𝑒𝑟𝑒 𝑦𝑖

∗ = 𝑥𝑖
𝑇𝛽𝜏 + 𝑢𝑖     , 𝑄𝜏 (

𝑦𝑖
∗

𝑥𝑖
𝑇⁄ ) = 𝑥𝑖

𝑇𝛽𝜏                    (3)  

where  

𝑦𝑖
∗ is latent response variable (unobserved variable). 𝑥𝑖 is vector of independent 

variables .𝛽𝜏 is the vector of regression coefficients for specific-quantiles .𝑄𝜏 (
𝑦𝑖

∗

𝑥𝑖
𝑇⁄ ) is 
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conditional quantile function with level 𝜏, 𝜏 ∈ (0,1) .𝑢𝑖 denotes the random error satisfying 

𝑄𝜏 (
𝑢𝑖

𝑥𝑖
𝑇⁄ ) = 0 Chernozhukov, V., and  Hong, H. The estimation of Tobit quantile 

regression coefficients requires the minimization of a weighted check function, which 

integrates the quantile regression model with the censoring mechanism of the Tobit model 

as following: 

 

=  ∑ 𝜌𝜏

𝑛

𝑖=1

𝛽𝜏  
𝑚𝑖𝑛 (𝑦𝑖 − 𝑚𝑎𝑥{0, 𝑦𝑖

∗})  , 𝑤ℎ𝑒𝑟𝑒 𝑦𝑖
∗ = 𝑥𝑖

𝑇𝛽𝜏 + 𝑢𝑖                                  (4) 

where 𝜌𝜏(𝑢) is called loss (check)function of (Koenker and Bassett). Unfortunately, the 

mathematical formula representing the loss function shown in Equation (4) is non-

differentiable at zero. Therefore, minimization of equation (4) can be implemented via  the 

linear programming approach  is proposed by the  (Koenker and D’Orey ). in high-

dimensional data the number of independent variables (p) is very large , the variable 

selection is  becomes hard matter for interpretable  , in tobit quantile regression , several 

penalization methods can be used to perform shrinkage and selection of relevant 

independent variables. The most important method used to regularize the Tobit quantile 

regression model is the LASSO method, which was proposed by the researcher (Tibshirani 

in ). The penalized tobit quantile regression  loss is 

=  ∑ 𝜌𝜏

𝑛

𝑖=1

𝛽𝜏  
𝑚𝑖𝑛 (𝑦𝑖 − 𝑚𝑎𝑥{0, 𝑦𝑖

∗}) + 𝜆 ∥ 𝛽𝜏 ∥                                        (5)                 

The term of 𝜆 ∥ 𝛽𝜏 ∥  represents the penalization penalty function  is achieving the  

coefficients estimation and variable selection at same time , and λ is  shrinkage parameter 

that controlled the Tobit quantile regression coefficients. Also , the equation (5) is non-

differentiable at zero. The Bayesian approach incorporates prior distributions and 

likelihood functions to estimate tobit quantile regression coefficients and its variable 

selection, 

2. Materials and Methods 

Hierarchical Bayesian Method 

One of the key ideas in Bayesian statistics is the conditional posterior distribution 

𝑓(𝛽|𝑦). The posterior distribution 𝑓(𝛽|𝑦) provides us with comprehensive details 

regarding parameter estimate. The conditional posterior distribution  is proportional to 

the product of likelihood function 𝑓(𝑦|𝛽)  and prior distribution 𝑔(𝛽). Therefore, the 

mathematical formula(Gelman et al): 
𝑓(𝛽|𝑦) ∝ 𝑓(𝑦|𝛽) 𝑔(𝛽)                                                           (6) 

𝑔(𝛽) is gives us an idea of the estimated parameters 𝛽 before the data observation , 

𝑓(𝑦|𝛽) is the likelihood function how credible the observed data y is for different values 

of the parameter 

𝑓(𝛽|𝑦) is The final result of Bayesian analysis which, it  gives a complete probabilistic 

description of 𝛽. In this paper we will focus on Bayesian framework for estimating Tobit 

quantile regression models with two sections its likelihood function for and Laplace prior 

distribution [11], [12]. 

Information of Likelihood Function 

The loss function(check function)  and the skew Laplace distribution (SLD) are 

equivalent in tobit quantile regression model(Yu and Moyeed ). In tobit quantile 

regression the random error 𝑢𝑖 belong to skew Laplace distribution . It is define with 

probability density function (pdf) as following: 

 

𝑓(𝑢𝑖|𝜇, 𝜎, 𝜏) =
𝜏(1 − 𝜏)

𝜎
 exp−𝜌𝜏 {(

𝑢𝑖 − 𝜇

𝜎
)}                                   (7) 

 

when 𝜇 𝑎𝑛𝑑 𝜎 are equal 0 and 1 respectively, then (pdf) of 𝑢𝑖  is become  

 
𝑓(𝑢𝑖|𝜇) = 𝜏(1 − 𝜏) exp−𝜌𝜏{(𝑢𝑖)}                                   (8) 
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𝜌𝜏(. ) is the check function defined as in equation [4], The joint distribution of 𝑦 =

(𝑦𝑖)𝑇 𝑔𝑖𝑣𝑒𝑛 𝑋 = (𝑥𝑖)
𝑇 , 𝑖 = 1,2, … . . 𝑛 is . 

 

(𝑦|𝑋, 𝛽, 𝜏) = 𝜏𝑛(1 − 𝜏)𝑛𝑒𝑥𝑝 {− ∑ 𝜌𝜏(𝑦𝑖 − 𝑚𝑎𝑥{0, 𝑥𝑖
𝑇𝛽𝜃 + 𝑢𝑖}

𝑛

𝑖=1

}                    (9) 

the equivalence between maximizing the likelihood function in a tobit quantile 

regression model (under the SLD) and minimizing the  check function of tobit quantile 

regression   is fundamental. However, it is noted that directly using the asymmetric 

Laplace distribution (ALD) leads to inefficient and computationally complex algorithms 

for estimating the parameters. To overcome this problem, transformation methods can be 

employed ,that proposed by (Kozumi and Kobayashi) [13]. 

 In order to enable effective Gibbs sampling in Bayesian tobit quantile regression, 

(Kozumi and Kobayashi) showed that the (SLD) can be described as a scale mixture of 

normal (SMN) distributions. 
     𝑦𝑖=𝑚𝑎𝑥{0,𝑦𝑖

∗} ,             𝑖=1,….,𝑛,   

𝑦𝑖
∗ = 𝑥𝑖

𝑇𝛽𝜏 + (1 − 2𝜏)𝑤𝑖 + √2𝑤𝑖  𝜀𝑖                                                                                             (10)                            

where 𝑤𝑖  is belong to experiential distributed with rate parameter 𝜏(1 − 𝜏), 𝜀𝑖 is 

belong to standard normal. Therefore , the latent variable   𝑦𝑖
∗~𝑁(𝑥𝑖

𝑇𝛽𝜏 + (1 − 2𝜏)𝑤𝑖 , 2𝑤𝑖) 

via this information the (p.d.f) of latent variable   𝑦𝑖
∗ is  

𝑓(𝑦𝑖
∗|𝑥𝑖

𝑇 , 𝜏, 𝛽𝜏 , 𝑤𝑖) =
1

√4𝜋𝑤𝑖

𝑒
−(𝑦𝑖

∗−𝑥𝑖
𝑇𝛽𝜏−(1−2𝜏)𝑤𝑖)

2

4𝑤𝑖                                           (11) 

 

Then the Likelihood Function of tobit quantile regression according to proposed 

Koizumi and Kobayashi (2011) is become as following: 

𝑓(𝑦𝑖
∗|𝑥𝑖

𝑇 , 𝜏, 𝛽𝜏 , 𝑤𝑖) = [
1

√4𝜋𝑤𝑖

]

𝑛

𝑒
− ∑

(𝑦𝑖
∗−𝑥𝑖

𝑇𝛽𝜏−(1−2𝜏)𝑤𝑖)
2

4𝑤𝑖                                     (12) 

 

The above equation is very important for estimating the coefficients in tobit quantile 

regression  

Prior of Laplace Distribution  

Variable selection(V.S) is a major step in statistical modeling .Where, aiming to 

determine the most relevant independent variable  for a regression model while exclude 

irrelevant . The aim (V.S) is to improve regression model  performance, , generalization 

and interpretability, also reducing overfitting. Tibshirani noted for the researchers in 

variable selection within the Bayesian approach that the suitable prior distribution is a 

Laplace distribution. The Laplace prior distribution is defined as following formula:    

 

𝑝(𝛽𝑗|𝜆) = 𝜆
2⁄  𝑒𝑥𝑝{−𝜆|𝛽𝑗|}                                                                   (13) 

However, directly using a Laplace prior distribution leads to inefficient and unstable 

Gibbs sampling algorithms when constructing full posterior distributions. To overcome 

this problem, a set of Laplace transforms can be used, as demonstrated below: 

Scale Mixture of Normal (SMN) 

Andrews and Mallows discuss (SMN) distributions, that provide us  a flexible method 

to generate distributions from the normal distribution. One main result is that the Laplace  

distribution can be expressed as a (SMN), when the mixing distribution is exponential 

distribution. Therefore, the (SMN) is take the mathematical formula    

 

𝜆

2
𝑒−𝜆|𝛽𝑗| = ∫

1

√2𝜋𝑣𝑗

∞

0

𝑒
−𝛽2

2𝑣𝑗   
𝜆2

2
𝑒

−𝜆2

2
𝑣𝑗   𝑑𝑣𝑗                                                  (14) 

 The right side of the equation above represents (SMN) which consists of two parts, 

first part is belong to  normal distribution with mean 0 and latent variance 𝑣𝑗 as 

following: 
1

√2𝜋𝑣𝑗
𝑒

−𝛽2

2𝑣𝑗  and second part is belong to exponential distribution that have  rate 
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parameter 
𝜆2

2
. In equation (14) the integral combines between two parts, for prove the 

equation (14) we will change some variables let 𝑡 = 𝑣𝑗 ,therefore the integral becomes: 

 

𝜆2

2√2𝜋
∫ 𝑡−

1
2

∞

0

 𝑒𝑥𝑝 (
−𝛽2

2𝑡
−  

𝜆2

2
𝑡)   𝑑𝑡                                               (15) 

We will the modified second kind (𝐾𝑉(𝑍))  of Bessel function. where, 𝑠 = −
1

2
 ,a=

𝛽2

2
  and 

b=
𝜆2

2
the equation (15) is become ∫ 𝑡𝑠−1∞

0
𝑒𝑥𝑝 (

−𝑎

𝑡
−   𝑏𝑡)   𝑑𝑡 = 2 (

𝑎

𝑏
)

𝑣

2
𝐾𝑉(2√𝑎𝑏) from 

identity 𝐾
−

1

2

(𝑍) = 𝐾1

2

(𝑍) = √
𝜋

2𝑧
𝑒−𝑧 , by steps of integral ,we will obtained 

∫ 𝑡−
1

2
∞

0
𝑒𝑥𝑝 (

−𝛽2

2𝑡
−   

𝜆2

2
𝑡)   𝑑𝑡 =

2𝜋

√2𝜆|𝛽𝑗|
𝑒−𝜆|𝛽𝑗| more detail see (Andrews and Mallows (1974)) 

and Olver, F. W. (Ed.). (2010).  

∫
1

√2𝜋𝑣𝑗

∞

0

𝑒
−𝛽2

2𝑣𝑗   
𝜆2

2
𝑒

−𝜆2

2
𝑣𝑗   𝑑𝑣𝑗 =

𝜆

2
𝑒−𝜆|𝛽𝑗| 

Scale Mixture Uniform (SMU) 

(Mallick and Yi) are proposed another transformation formula of Laplace prior 

distribution as shown  

𝜆

2
𝑒{−𝜆|𝛽𝑗|} = ∫

1

2𝑣𝑗

 
𝜆2

Γ(2)

∞

𝑣𝑗>|𝛽𝑗|

  𝑣𝑗
2−1 𝑒𝑥𝑝{−𝜆𝑣𝑗} 𝑑𝑣𝑗                              (16) 

within the integral is a product of two parts, first part is 
1

2𝑣𝑗
 uniform distribution -like 

term for parameter of ( 𝛽𝑗) conditional on 𝑣𝑗. The second part is 

 
𝜆2

Γ(2)
 𝑣𝑗

2−1 𝑒𝑥𝑝{−𝜆𝑣𝑗} is special case of  Gamma distribution for 𝑣𝑗 when gamma is 2. 

Let 𝛽𝑗 given 𝑣𝑗 is belong to Conditional Uniform Distribution with interval[−𝑣𝑗 , 𝑣𝑗] 

.Therefore, 𝑓{𝛽𝑗|𝑣𝑗} =
1

2𝑣𝑗
Ι(|𝛽𝑗| ≤ 𝑣𝑗), Ι(. ) is indicator function. The 𝑣𝑗 is special case of  

Gamma distribution with shape parameter 2 and  rate parameter 𝜆 𝑓{𝑣𝑗|𝜆} =
𝜆2

Γ(2)
 

𝑣𝑗
2−1 𝑒𝑥𝑝{−𝜆𝑣𝑗} = 𝜆2𝑣𝑗𝑒𝑥𝑝{−𝜆𝑣𝑗},where Γ(2) = (2 − 1)! = 1 . 

𝑓{𝛽𝑗|𝜆} = ∫
1

2𝑣𝑗

 
𝜆2

Γ(2)

∞

𝑣𝑗>|𝛽𝑗|

  𝑣𝑗   𝑒𝑥𝑝{−𝜆𝑣𝑗} 𝑑𝑣𝑗  

𝑓{𝛽𝑗|𝜆} =
𝜆2

2
∫ 𝑒𝑥𝑝{−𝜆𝑣𝑗} 𝑑𝑣𝑗  

∞

𝑣𝑗>|𝛽𝑗|

     

 

∫ 𝑒𝑥𝑝{−𝜆𝑣𝑗} 𝑑𝑣𝑗  

∞

𝑣𝑗>|𝛽𝑗|

=
𝑒𝑥𝑝{−𝜆|𝛽𝑗|}

𝜆
=

𝜆2

2

𝑒𝑥𝑝{−𝜆|𝛽𝑗|}

𝜆
=

𝜆

2
𝑒𝑥𝑝{−𝜆|𝛽𝑗|} 

3. Results and Discussion 

Conditional Posterior Distribution with SMN prior 

From the equation in(12) and the equation (14), we will obtained the  Conditional  

Posterior Distribution with SMN prior. our Bayesian hierarchical model  consists of 

multiple levels of randomness distributions. To summary , our Bayesian hierarchical 

given by 

𝑦𝑖=𝑚𝑎𝑥{0,𝑦𝑖
∗} ,             𝑖=1,….,𝑛,  censored at 0 𝑖𝑓𝑦𝑖

∗ > 0  

𝑦𝑖
∗~𝑁(𝑥𝑖

𝑇𝛽𝜏 + (1 − 2𝜏)𝑤𝑖 , 2𝑤𝑖) 
𝑤𝑖~𝐸𝑥𝑝 (𝜏(1 − 𝜏)) , 

𝛽𝑗~𝑁(𝑣𝑗)  

𝑉𝑗~𝐸𝑥𝑝 (
𝜆𝑗

2
),  

𝜆𝑗~𝐺𝑎𝑚𝑚𝑎(𝑎, 𝑏)  

𝑎 𝑎𝑛𝑑 𝑏 are fixed hyperparameters  
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From the our Bayesian hierarchical show in the above ,we will obtain a good Gibbs 

sampler, it produced  efficient algorithm via the following conditional  posterior 

distribution 

Application Said  

We use Tobit quantile regression (Toqureg) model to analyze the liquefaction data by 

two methods as shown in theoretical section. The liquefaction data are collecting  from 

Diwaniyah hospital [15]. The sample size of our data 130 observations .The response 

variable is known according to following: 

   

𝑦𝑖 = {
𝑦𝑖

∗            𝑖𝑓 𝑦𝑖
∗ > 15                      

             
0               𝑖𝑓 𝑦𝑖

∗ ≤ 15                     
     

The response variable 𝑦𝑖  is censored at zero point, if the time of Liquefaction more 

than 15 minute  the response variable is positive values ,but when  the time of Liquefaction 

less than 15 minute  the response variable is zero values. There are 20 independent 

variables are: 𝑥1 is (Ph Basic and Acidic), 𝑥2 is (Undescended testicle), 𝑥3 is (Sperm 

Antibodies), 𝑥4 is (Count Sperm) , 𝑥5 is (Active Sperm Count) , 𝑥6 is (Alcohol 

Consumption) , 𝑥7 is (Weak Motility Sperm Count) , 𝑥8 is (Dead Sperm Count) , 𝑥9 is 

(Amount of Testosterone), 𝑥10 is (Amount of Polactin), 𝑥11 is (Blood group) , 𝑥12 is 

(Physical stimulants) , 𝑥13 is (Smoking) , 𝑥14 is (varicocele) , 𝑥15 is (R.B.sugar) , 𝑥16 is White 

Blood Cell (WBC) , 𝑥17 is (Weight) , 𝑥18 is   Erythrocyte Sedimentation Rate   (ESR) , 𝑥19 is 

Procalcitonin (PCT) , 𝑥20 is (Testicular abscess). In this part, we compare two Bayesian 

lasso tobit quantile regression  methods with different prior distribution  formulations 

(New Bayesian Lasso in Tobit Quantile Regression(new B Tobit Q Reg, Scale Mixture of 

Normal (SMN))). To assess the performance of the methods under study, the mean 

squared error (MSE) are computed at tobit quantile levels 𝜏𝜖(0.15 ,0.35,0.55,0.75 𝑎𝑛𝑑 0.95. 

The mean squared error results are presented in Table 1.  

 

Table 1. Mean squared error (MSEs) for the liquefaction time data.   

Methods 𝝉 = 𝟎. 𝟏𝟓 

MSE 

𝝉 = 𝟎. 𝟑𝟓 

MSE 

𝝉 = 𝟎. 𝟓𝟓 

MSE 

𝝉 = 𝟎. 𝟕𝟓 

MSE 

𝝉 = 𝟎. 𝟗𝟓 

MSE 

SMN 0.6248 0.6742 0.7614 0.8537 0.9721 

new B Tobit 

Q Reg 

0.5147 0.5938 0.7218 0.8009 0.9214 

 

From the results listed in above table, The new B Tobit Q Reg method demonstrates a 

lower mean squared error relative to the other method, which reflects its a good  

performance. Based on this result, we find that this method outperformed the comparison 

method. Therefore, we will adopt this approach for both point estimation and confidence 

interval in 90% estimation at tobit quantile levels 𝜏𝜖(0.15 ,0.35,0.55,0.75 𝑎𝑛𝑑 0.95of the 

independent variables, as shown below. 

At first tobit quantile level (𝝉 = 𝟎. 𝟏𝟓) 

The parameters of the Tobit regression model for the liquidity data can be estimated 

as follows 

 

Table 2. Show point estimates and 95% confidence intervals for the  0.15 tobit quantile 

level  by (new B Tobit Q Reg ) method  of the liquefaction data. 

Variable name Variable 

Simple 
𝜷̂ Lower 

bound 

Upper bound 

-------------- Intercept 1.525 0.659 3.837 

Ph Basic and Acidic 𝑥1 0.082 -0.110 0.016 

Undescended 

testicle 
𝑥2 0.000 -0.007 0.009 

Sperm Antibodies 𝑥3 0.000 -0.018 0.081 
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Count Sperm 𝑥4 0.859 6.197 1.343 

Active Sperm Count 𝑥5 0.804 0.238 0.915 

Alcohol 

Consumption 
𝑥6 0.000 -0.051 0.091 

Weak Motility 

Sperm Count 
𝑥7 0.775 0.531 1.422 

Dead Sperm Count 𝑥8 0.093 -0.318 0.186 

Amount of 

Testosterone 
𝑥9 0.506 0.322 0.890 

Amount of Polactin 𝑥10 0.751 -0.081 0.812 

Blood group 𝑥11 0.335 -0.720 0.591 

Physical stimulants 𝑥12 -0.215 -0.432 0.541 

Smoking 𝑥13 0.074 -0.090 0.418 

varicocele 𝑥14 0.000 -0.008 0.001 

R.B.sugar 𝑥15 2.020 1.389 2.582 

WBC 𝑥16 0.792 0.964 1.378 

Weight 𝑥17 0.000 -0.001 0.009 

E . S .R 𝑥18 0.000 -0.018 0.045 

PCT 𝑥19 0.000 -0.012 0.012 

Testicular abscess 𝑥20 -

1.0015 

-1.372 0.421 

 

From the results presented in the table above, it is evident that seven variables can be 

excluded from constructing the predictive model of the Tobit quantile regression model 

at the 0.15 quantile level. (Table 2) This is because their estimated coefficients are equal to 

zero exactly, indicating that these variables have no effect on the time of liquefaction. 

Therefore, they can be excluded from the model, allowing us to focus on the remaining 

variables that have either a positive or negative effect on the liquefaction time variable. A 

more detailed view of the results is provided in the following figure.  

 

 
Figure 1. Show the coefficients estimation and 95% confidence intervals for the 0.15 tobit 

quantile level. 

 

From the figure 1 above, which provides a comprehensive visualization of the impact 

of the independent variables on the liquefaction time   variable, it can be observed that the 
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horizontal dashed line lies along the zero point. Accordingly, the estimated variable 

values that fall on this line are effectively zero and statistically insignificant, and thus can 

be excluded from the construction of the predictive model. In contrast, the remaining 

variables exhibit an influence on the the liquefaction time variable. Some of these variables 

have statistically insignificant effects, as indicated in red, while others show statistically 

significant effects, as indicated in blue. 

At second tobit quantile level (𝝉 = 𝟎. 𝟑𝟓) 

The parameters of the Tobit regression model for the liquidity data can be estimated 

as follows 

 

Table 3. Show point estimates and 95% confidence intervals for the 0.35 tobit quantile 

level by (new B Tobit Q Reg) method of the liquefaction data. 

Ariable name Variable 

simple 
𝜷̂ Lower 

bound 

Upper bound 

-------------- Intercept 1.211 0.982 2.122 

Ph Basic and Acidic 𝑥1 0.117 0.013 0.617 

Undescended testicle 𝑥2 0.000 -0.247 0.057 

Sperm Antibodies 𝑥3 0.081 -0.172 0.284 

Count Sperm 𝑥4 0.418 0.326 0.744 

Active Sperm Count 𝑥5 0.277 0.129 0.764 

Alcohol 

Consumption 
𝑥6 0.341 -0.081 0.364 

Weak Motility Sperm 

Count 
𝑥7 1.005 0.229 1.384 

Dead Sperm Count 𝑥8 0.290 -0.784 0.592 

Amount of 

Testosterone 
𝑥9 0.791 0.540 1.090 

Amount of Polactin 𝑥10 0.092 -0.046 0.715 

Blood group 𝑥11 1.015 -1.816 1.137 

Physical stimulants 𝑥12 -0.442 -0.832 0.541 

Smoking 𝑥13 0.074 -0.073 0.252 

varicocele 𝑥14 0.000 -0.067 0.194 

R.B.sugar 𝑥15 1.157 0.726 1.324 

WBC 𝑥16 0.884 0.561 1.178 

Weight 𝑥17 0.000 -0.041 0.241 

E . S .R 𝑥18 0.000 -0.029 0.185 

PCT 𝑥19 0.000 -0.095 0.082 

Testicular abscess 𝑥20 -1.045 -1.137 0.681 

 

From the results presented in the table above, it is evident that five variables can be 

excluded from constructing the predictive model of the Tobit quantile regression model 

at the 0.15 quantile level. (Table 3) This is because their estimated coefficients are equal to 

zero exactly, indicating that these variables have no effect on the time of liquefaction. 

Therefore, they can be excluded from the model, allowing us to focus on the remaining 

variables that have either a positive or negative effect on the liquefaction time variable. A 

more detailed view of the results is provided in the following figure.  
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Figure 2. Show the coefficients estimation and 95% confidence intervals for the 0.35 tobit 

quantile level. 

 

From the figure 2 above, which provides a comprehensive visualization of the impact 

of the independent variables on the liquefaction time   variable, it can be observed that the 

horizontal dashed line lies along the zero point. Accordingly, the estimated variable 

values that fall on this line are effectively zero and statistically insignificant, and thus can 

be excluded from the construction of the predictive model. In contrast, the remaining 

variables exhibit an influence on the the liquefaction time variable. Some of these variables 

have statistically insignificant effects, as indicated in red, while others show statistically 

significant effects, as indicated in blue. 

At third tobit quantile level (𝝉 = 𝟎. 𝟓𝟓) 

The parameters of the Tobit regression model for the liquidity data can be estimated 

as follows 

 

Table 4. Show point estimates and 95% confidence intervals for the  0.55 tobit 

quantile level  by (new B Tobit Q Reg ) method  of the liquefaction data. 

Variable name Variable 

Simple 
𝜷̂ Lower 

bound 

Upper 

bound 

-------------- Intercept 1.542 0.829 1.682 

Ph Basic and Acidic 𝑥1 0.367 0.274 0.726 

Undescended testicle 𝑥2 0.000 -0.374 0.241 

Sperm Antibodies 𝑥3 0.153 -0.211 0.523 

Count Sperm 𝑥4 0.139 0.091 0.684 

Active Sperm Count 𝑥5 0.418 0.282 0.973 

Alcohol Consumption 𝑥6 0.215 -0.524 0.691 

Weak Motility Sperm 

Count 
𝑥7 1.451 0.765 1.682 

Dead Sperm Count 𝑥8 0.368 -0.374 0.754 

Amount of Testosterone 𝑥9 1.111 0.784 1.325 

Amount of Polactin 𝑥10 0.104 -0.124 0.447 

Blood group 𝑥11 1.611 -1.754 1.821 

Physical stimulants 𝑥12 -0.524 -0.775 0.485 

Smoking 𝑥13 0.443 -0.137 0.683 

varicocele 𝑥14 0.000 -0.341 0.552 
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R.B.sugar 𝑥15 1.247 0.976 1.763 

WBC 𝑥16 0.927 0.487 1.965 

Weight 𝑥17 0.000 -0.153 0.525 

E . S .R 𝑥18 0.000 -0.173 0.384 

PCT 𝑥19 0.000 -0.324 0.318 

Testicular abscess 𝑥20 -0.153 -0.357 0.455 

 

From the results presented in the table above, it is evident that five variables can be 

excluded from constructing the predictive model of the Tobit quantile regression model 

at the 0.15 quantile level. (Table 4). This is because their estimated coefficients are equal 

to zero exactly, indicating that these variables have no effect on the time of liquefaction. 

Therefore, they can be excluded from the model, allowing us to focus on the remaining 

variables that have either a positive or negative effect on the liquefaction time variable. A 

more detailed view of the results is provided in the following figure. 

 

 
Figure 3. Show the coefficients estimation and 95% confidence intervals for the  0.55 tobit 

quantile level. 

 

From the figure above, which provides a comprehensive visualization of the impact 

of the independent variables on the liquefaction time   variable, it can be observed that the 

horizontal dashed line lies along the zero point. Accordingly, the estimated variable 

values that fall on this line are effectively zero and statistically insignificant, and thus can 

be excluded from the construction of the predictive model. In contrast, the remaining 

variables exhibit an influence on the the liquefaction time variable. Some of these variables 

have statistically insignificant effects, as indicated in red, while others show statistically 

significant effects, as indicated in blue. 

At forth tobit quantile level (𝝉 = 𝟎. 𝟕𝟓) 

The parameters of the Tobit regression model for the liquidity data can be estimated 

as follows 

 

Table 5. Show point estimates and 95% confidence intervals for the  0.75 tobit quantile 

level  by (new B Tobit Q Reg ) method  of the liquefaction data. 

Variable name Variable 

Simple 
𝜷̂ Lower 

bound 

Upper bound 

-------------- Intercept 2.274 1.341 2.356 

Ph Basic and Acidic 𝑥1 0.728 0.374 1.127 
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Undescended testicle 𝑥2 0.000 -0.549 0.374 

Sperm Antibodies 𝑥3 0.246 0.187 0.409 

Count Sperm 𝑥4 0.388 0.218 0.756 

Active Sperm Count 𝑥5 0.845 0.627 1.247 

Alcohol Consumption 𝑥6 1.315 -0.384 1.453 

Weak Motility Sperm 

Count 
𝑥7 1.218 1.021 0.784 

Dead Sperm Count 𝑥8 0.242 -0.118 0.685 

Amount of 

Testosterone 
𝑥9 1.483 1.134 1.821 

Amount of Polactin 𝑥10 0.719 -0.227 0.937 

Blood group 𝑥11 0.906 -1.672 1.196 

Physical stimulants 𝑥12 -0.820 -1.112 -0.329 

Smoking 𝑥13 0.618 -0.422 0.922 

varicocele 𝑥14 0.000 -0.516 0.223 

R.B.sugar 𝑥15 1.264 0.655 1.464 

WBC 𝑥16 1.288 0.631 1.627 

Weight 𝑥17 0.000 -0.541 0.524 

E . S .R 𝑥18 0.000 -0.083 0.408 

PCT 𝑥19 0.000 -0.149 0.246 

Testicular abscess 𝑥20 -0.153 -0.497 0.391 

 

From the results presented in the table above, it is evident that five variables can be 

excluded from constructing the predictive model of the Tobit quantile regression model 

at the 0.15 quantile level. (Table 5) This is because their estimated coefficients are equal to 

zero exactly, indicating that these variables have no effect on the time of liquefaction . 

Therefore, they can be excluded from the model, allowing us to focus on the remaining 

variables that have either a positive or negative effect on the liquefaction time variable. A 

more detailed view of the results is provided in the following figure. 

 

 

 
Figure 4. Show the coefficients estimation and 95% confidence intervals for the  0.75 tobit 

quantile level. 
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From the figure 4 above, which provides a comprehensive visualization of the impact 

of the independent variables on the liquefaction time   variable, it can be observed that the 

horizontal dashed line lies along the zero point. Accordingly, the estimated variable 

values that fall on this line are effectively zero and statistically insignificant, and thus can 

be excluded from the construction of the predictive model. In contrast, the remaining 

variables exhibit an influence on the liquefaction time variable. Some of these variables 

have statistically insignificant effects, as indicated in red, while others show statistically 

significant effects, as indicated in blue. 

At forth tobit quantile level (𝝉 = 𝟎. 𝟗𝟓) 

The parameters of the Tobit regression model for the liquidity data can be estimated 

as follows 

 

Table 6. Show point estimates and 95% confidence intervals for the  0.95 tobit 

quantile level  by (new B Tobit Q Reg ) method  of the liquefaction data. 

Variable name Variable 

Simple 
𝜷̂ Lower 

bound 

Upper bound 

-------------- Intercept 1.548 0.675 1.857 

Ph Basic and Acidic 𝑥1 0.924 0.584 1.283 

Undescended 

testicle 
𝑥2 0.000 -0.181 0.267 

Sperm Antibodies 𝑥3 0.306 0.259 0.586 

Count Sperm 𝑥4 0.573 0.325 1.126 

Active Sperm Count 𝑥5 0.766 0.364 0.958 

Alcohol 

Consumption 
𝑥6 0.635 0.253 0.815 

Weak Motility 

Sperm Count 
𝑥7 1.581 0.674 1.697 

Dead Sperm Count 𝑥8 0.464 -0.474 0.512 

Amount of 

Testosterone 
𝑥9 1.184 0.434 1.314 

Amount of Polactin 𝑥10 0.812 -0.157 1.114 

Blood group 𝑥11 0.375 -0.524 0.751 

Physical stimulants 𝑥12 -0.274 -0.674 0.184 

Smoking 𝑥13 0.413 -0.245 0.854 

varicocele 𝑥14 0.000 -0.225 0.124 

R.B.sugar 𝑥15 1.418 0.808 1.700 

WBC 𝑥16 0.652 0.452 1.114 

Weight 𝑥17 0.591 0.374 0.867 

E . S .R 𝑥18 0.000 -0.185 0.310 

PCT 𝑥19 0.000 -0.099 0.176 

Testicular abscess 𝑥20 -0.427 -0.725 0.543 

 

From the results presented in the table above, it is evident that five variables can be 

excluded from constructing the predictive model of the Tobit quantile regression model 

at the 0.15 quantile level. (Table 6) This is because their estimated coefficients are equal to 

zero exactly, indicating that these variables have no effect on the time of liquefaction. 

Therefore, they can be excluded from the model, allowing us to focus on the remaining 

variables that have either a positive or negative effect on the liquefaction time variable. A 

more detailed view of the results is provided in the following figure. 
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Figure 5. Show the coefficients estimation and 95% confidence intervals for the  0.95 tobit 

quantile level. 

 

From the figure 5 above, which provides a comprehensive visualization of the impact 

of the independent variables on the liquefaction time   variable, it can be observed that the 

horizontal dashed line lies along the zero point. Accordingly, the estimated variable 

values that fall on this line are effectively zero and statistically insignificant, and thus can 

be excluded from the construction of the predictive model. In contrast, the remaining 

variables exhibit an influence on the liquefaction time variable. Some of these variables 

have statistically insignificant effects, as indicated in red, while others show statistically 

significant effects, as indicated in blue. 

4. Conclusion 

It can be concluded that this method represents the optimal approach for analyzing 

the liquefaction time  data, as evidenced by the mean squared error(MSE) values across 

all levels of the Tobit quantile regression model. It is also observed that there are five 

variables that are not significant in constructing the predictive model for analyzing the 

liquefaction time  data across all levels of the Tobit quantile regression model. This is due 

to the fact that their estimated coefficients are zero, indicating that they have no 

meaningful effect  on the response variable. The results indicate the presence of 

approximately 15 variables that influence the response variable. Among them, 13 

variables exhibited a positive (direct) effect, suggesting that an increase in these variables 

leads to an increase in the response variable. In contrast, two variables demonstrated an 

inverse effect, meaning that their increase is associated with a decrease in the response 

variable. 

Recommendations 

In analyzing the real data used in this study, it is essential to employ an appropriate 

analytical method that provides the researcher with accurate and objective results in 

interpreting the studied phenomenon. Therefore, it is recommended to compare the 

applied methods and adopt the most suitable one for the analysis. In the analysis of 

liquefaction time  data, it is important to investigate additional variables that may have a 

direct impact on the response variable. We recommend analyzing the data under study 

using more effective regularization methods that can better identify and select significant 

variables while excluding irrelevant ones. Finally, we propose extending the current study 

to include new regularization methods with strong statistical properties. Among the 

suggested methods are the Adaptive LASSO and the Elastic Net, as these techniques are 

considered regularization methods that possess the oracle property. 
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