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Abstract: Diabetes mellitus is a widespread concern worldwide and the most serious microvascular 

diseases that usually occur as a result are those of the eye, which include the retinopathy and macular 

edema. Over the past decade, DR has emerged as a significant player in causing vision disability and 

blindness. Provided that diabetes-related eye complications are promptly diagnosed and handled, 

the consequences of them may be significantly improved and the  level of sugar in the blood can be 

kept on an adequate level. Nevertheless, the DR symptoms are not consistent and may be 

complicated; thus, doctors may spend a lot of time to diagnose them.One of the approaches to 

detecting and  classifying DR on fundus retina photographs that is taken into account in the paper 

is the one which relies on CNNs and deep learning. All the experimental data used in the present 

study was taken at the Department of Ophthalmology at Xiangya No. 2 Hospital at Changsha in 

China. The sample of cases is not considerable and the information included  in this dataset is 

imbalanced. That is why a system was made that can be used to rectify the variety and excellence of 

the information utilized in the training by normalizing and creating information.Then, many CNNs 

such as "ResNet"-101, "ResNet"-50, and "VGGNet"-16 were employed to ascertain the phases of DR. 

"ResNet"-101 outperformed the other models by getting 98.88% accuracy and losing 0.3499 during 

training and 0.9882 during testing. The model was checked on datasets such as HRF, STARE, 

DIARETDB0, and XHO, which contain 1,787 examples and resulted in an average accuracy of 97%, 

making it higher than existing methods on the same subject. As a result, using this proposed model 

enhances DR detection accuracy more than "ResNet"-50 and "VGGNet"-16, making it promising for 

DR screening in health services. 

Keywords: Diabetic retinopathy, classification, Convolutional neural network, deep learning, 

"ResNet", "VGGNet". 

1. Introduction 

Both types of diabetes, namely diabetes type 1 and type 2, are said to be factors that 

give rise to the microvascular disease, known as diabetic retinopathy. Due to such a 

disease the structure and functioning of the retina become impaired and this happens to 

be one of the common causes of people becoming blind or losing their vision in the world. 

According to epidemiologic reports, close to 33 per cent of diabetics are affected by DR 

and long-term diabetics are almost on the verge of acquiring this condition. It has been 

estimated that the prevalence of people affected by DR may even touch 191 million by 

2030 [1,2]. 

Blindness caused by diabetes is largely preventable and an early intervention as well 

as the detection of its impact is beneficial [3,4] Individuals with diabetes that is not 

controlled well should also undergo screening of DR annually and those that present with 

the condition should allow the condition to be screened more frequently as the guidelines 
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outline. During a screening, the quality pictures of the retina are taken and provided to 

the ophthalmologists to examine thoroughly to make sure that they do not find traces of 

any retinal damage. 

In the absence of treatment, there is an initial development of mild non proliferative 

stage diabetic retinopathy which tends to progress up to proliferative diabetic retinopathy 

(PDR). The development of DR is a confirmation of the significance of the usage of the 

right screening and diagnostic procedures in order to detect the disease in the easiest 

treatable stage.(Figure 1) 

 
Figure 1. Stages of diabetic retinopathy. 

The prevalence of diabetes in the world has led to an expansion in the need of 

individuals to be screened through the use of an ophthalmologist which poses a 

significant challenge in the provision of specialized treatment to people. Due to the rise in 

the number of patients, healthcare systems require enormous quantities of medical 

personnel and funds to attend to their patients, hence patients take long in seeing an eye 

doctor [5, 6,7]. Consequently, it becomes evident that the improved automated tools of 

diagnostics will be useful to ophthalmologists or will serve as autonomous tools to 

diagnose disabilities in vision. In the recent years, deep learning (DL) methods based on 

artificial neural networks have contributed to the successful discovery and classification 

of diabetic retinopathy (DR). Such models are highly sensitive and precise to a great extent 

as a human being.  Also, DL may assist in detecting other eye diseases which are harmful 

to vision, i.e., diabetic macular edema, glaucoma, and age-related macular degeneration 

[8], [9], [10],[11]. 

These tools should be followed by well-established trends in clinical severity in 

evaluating the retinal images with an aim of assisting in medical care. Although a number 

of studies have addressed classifying DR in accordance with the past severity scale, there 

are limited studies which have addressed the classification of maculopathy, owing to the 

fact that the conditions are unavailable in the data.  The problematic aspect with making 

DL models on retina images is that they require numerous labeled images and the entire 

process is time-consuming [12], [13], 14]. The focal purpose of the research is an automated 

method of diagnosing and judging the level of severity of DR through retinal fundus 

photographs.  This is to establish a system that will in real-time correctly classify the 

clinical stage of DR using fundus photographs. To achieve this objective there are certain 

image processing techniques employed to enhance the images and select important 

components which will be employed to perform successful image classification. 

" The classification is performed with the help of such models by using CNN 

architecture as "ResNet"-101, "ResNet- 50, and "VGGNet-16". Both sets of data each model 

is constructed on are tested and evaluated against training accuracy, training loss, and 
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testing accuracy.  The method assists clinicians to ascertain patients quickly, saves the 

clinicians time and brings about improved management of diabetic retinopathy in cases 

of the public patients. The paper recommends a deep learning approach of CNNs to 

address the issue of diabetic retinopathy (DR) classification. The widespread use of CNN 

architectures can be explained by many successes of image classification overall and 

within ImageNet Challenge in particular. 

Most health experts apply CNNs due to their effectiveness when it comes to the 

identification of critical features. Unlike the earlier procedures, CNNs eliminate the 

procedure of identifying crucial features in a manual way; hence it saves on time and 

costs. Above all, they do not require much preprocessing, depend less on special features 

that have to be manually engineered, and discover valuable patterns that exist in images 

automatically. In addition, CNNs do not simply process the calculations effectively but 

can succeed in carrying out accurate tasks in recognizing the images.  They have greatly 

contributed to better performances in image recognition using numerous benchmark 

datasets. 

As far as we know, it is the first work in which the classification of DR into 

symptomatic and asymptomatic types using different CNN architecture, i.e., "ResNet"-

101, "ResNet"-50, and "VGGNet"-16, on a proprietary dataset to be collected in association 

with Xiangya Second Ophthalmic Hospital in Changsha, China, during the March-

October 2016 period. The most recent advances of deep learning have also enhanced the 

adaptability of CNN to huge datasets". This way, we seek a more systematic overview of 

the power of various CNN models to correctly identify DR and offer a fully automated 

solution to the problem of bringing the vision impairment burden to a minimal level 

because of delayed diagnosis. 

In comparison to previous research, This study presents improvements in 

categorization and training effectiveness accuracy for large-scale datasets. The main 

contributions of this work are summarized as follows: 

Preprocessing and Data Enhancement: The dataset in use is high-volume, class-

imbalanced, and also inherently noisy, which makes training deep neural networks a 

problem. To alleviate these factors, a number of preprocessing methods are utilized, such 

as image resizing, data augmentation, and normalization to enhance the diversity of the 

datasets and, thus, enhance the overall generalization of models. 

State-of-the-Art Performance with CNNs: This paper is published to show that CNNs-

based models can also provide state-of-the-art performance in the detection of DR. Critical 

image features of disease grading are the information learned autonomously by the 

networks and interpreted and applied to the expert ophthalmologic knowledge. The CNN 

architectures are rigorously tested and finer points of the extracted features are taken into 

account focusing on their interpretability and clinical value. 

This paper aims at examining the accuracy of three well-known Convolutional Neural 

Network (CNN) architectures ResNet-101, ResNet-50, and VGGNet-16 to detect and 

identify the minor visual characteristics related to the various stages of Diabetic 

Retinopathy (DR). A comparative analysis offers the study the potentials of each of the 

networks to identify associated fine-grained variations in retinal fundus images. The 

intended purpose is to identify the best architecture to be deployed practically in the task 

of medical images analysis, especially in automated classification of Stages of DR. 

Criterion to Compare Models and Select Models: 

In order to compare the three CNN models, extensive analysis is provided through 

the major performance indicators as such, classification performance, training 

performance, and generalization capability. The given comparison helps understand 

which is the most effective model to classify DR having found the right balance between 

the predictive performance and the practicality of the model in terms of computing. 

Organization of paper: The rest of the paper is organized in the following way(Section 

2 provides a comprehensive review of the available literature on DR classification with 
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CNNs, Section 3 provides the methodology that was used in this study, Section 4 gives 

the set of experiments, including dataset characteristics, preprocessing, model training 

processes and an in-depth discussion of the results obtained by each CNN model, Section 

5 concludes this paper with a conclusion and a discussion of possible future directions) 

Related Work 

Initial attempts at the detection of diabetic retinopathy (DR) have involved mainly on 

the processing of the retinal image into basically anatomical and pathological elements 

such as blood vessels, microaneurysms, fovea, exudates, hemorrhages, and the optic disc. 

These elements are looked at in order to evaluate DR severity. To cite just one example, in 

[15] a multi-facing two-dimensional Gaussian-matched filter was suggested to identify 

retinal vasculature, and in [16] Sinthanayothin et al.  delocalized the optic disc on the basis 

of high predominance of local average gray variance. Morphological methods were used 

to locate microaneurysm in the image of a fluorescein angiography by Baudoin et al. [17]. 

These techniques present a problem of limited applicability to low quality images and do 

not classify DR severity directly, even though they work well in localization of retinal 

structures. 

Automatic classification of DR has also explored usual processes of machine learning. 

These methods typically rely on the manual extraction of the features followed by the 

classification of the images using the customary classifiers. A set of descriptors of different 

types of retinopathy was designed using modeling with the use of scale-invariant feature 

transform (SIFT) [18]. The Bag-of-Visual-Words (BoVW) paradigm was used in the 

research [19,20] to unify low-level data as Speeded-Up Robust Features (SURF) and mid-

level description with the help of the semi-soft encoding.  This kind of approach has been 

very efficient as there are areas under the receiver operating characteristic (ROC) curves 

of 97.8 and 93.5 percent in exudates and red lesions respectively [21], [22]. 

To enhance representation, Seoud et al. [23,24] presented the probability of lesions as 

a probability map through the combination of lesion location, size and probability and 

scored 0.393 on Free-Response Receiver Operating Characteristic (FROC), which is higher 

than the previous records. SVMs were used to detect DR using features extracted in 

vascular as well as exudate regions [25], [26], 27], yet they are extremely sensitive to the 

quality of images and extremely variable to large amounts of data. Other morphological 

filtering and watershed transformation based methods have been applied as well to 

detected optic discs [28,29] though these show a reasonable sensitivity and predictive 

values on testing small datasets. 

"In recent years, the advent of deep learning—particularly convolutional neural 

networks (CNNs)—has revolutionized the field of computer vision, including medical 

image analysis, CNN-based models have shown superior performance in feature 

extraction and classification tasks, including blood vessel segmentation and retinal lesion 

detection" [30,31]. LeNet-5 [32], one of the earliest CNN architectures, was adapted for 

vascular segmentation. However, early CNN applications suffered from limitations, such 

as reliance on small and low-quality datasets and the need for expert-defined features. 

The next breakthrough of CNN-based image classification was published as AlexNet 

[33,34], and won the 2012 ImageNet Large Scale Visual Recognition Challenge (ILSVRC). 

This achieved success, leading to further more sophisticated architectures, such as 

VGGNet [35,36], GoogleNet [37] and ResNet [38]. Such architectures are among the best 

to have enhanced classification in many areas. In this respect, whereas in [39], CNN 

models were applied to find small differences in the DR pictures with an accuracy in 

classification being 95.68%. 

Other researchers like [40], saw the use of two deep learning models which include; a 

CNN512 based model that was used to run a five class DR classification on APTOS and 

DDR datasets, with an accuracy of 84.1 and 88.6 respectively; and a model based on 

YOLOv3 used to localize the presence of a lesion, which achieved a mean average 

precision (mAP) of 0.216. Also proposed [41] an SVM-based method of classifying DR in 
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the three classes namely normal, non-proliferative and proliferative based on features 

extracted in fundus images. 

There have also been CNN based network architectures that have been customized to 

the DR grading. In another example, [42] employed a four-layer deep CNN to classify DR 

as normal, mild and severe. The multiscale lesion detection done with scale-invariant 

representational model was shown to be highly generalizable in [43]. A VGG16-based 

CNN achieved 0.95 sensitivity and 0.75 accuracy, on a 5,000 image validation set in [44], 

trained on the Kaggle DR dataset [45]. These techniques, although they have a more 

oriented classification, are mostly inefficient in the localization of the important 

pathological areas. 

To address this limitation, class activation mapping (CAM) was introduced in [46] to 

generate spatial attention maps using weighted activations after global average pooling 

[47]. This technique was later adapted for regression tasks in [30], using a modified 

VGG16 architecture without fully connected layers to enhance lesion localization. 

Other recent methods combined deep learning and image processing in a fully 

automatic DR diagnosis method. An example is given by [48] that suggested a mixed-

detection of glaucoma and DR using artificial neural networks and handcrafted features. 

In [49], many preprocessing operations were used such as contrast-limited adaptive 

histogram equalization (CLAHE), morphological operations and Canny edge detection to 

increase the visibility of vessels before being classified. 

An integrated framework pathway of automatic classification of diabetic eye disease 

(DED) was presented in [50], using traditional image processing interventions (such as 

segmentation, augmentation) along with new CNN architecture to enhance the accuracy 

of the classification task. A test of 13 enhancement filters (Gaussian, bilateral, Wiener, PDE 

based and so forth) was undertaken with the Indian Diabetic Retinopathy Image Dataset 

(IDRiD) in [51]. Improved images were given as input to a CNN model to test and detect 

the most creative way of preprocessing. 

Despite these advances, several persistent challenges hinder progress in automated 

DR detection. These include: 

1. Limited availability of large, high-quality annotated datasets; 

2. Image quality degradation due to distortion or blur; 

3. Overfitting of deep learning models on small or imbalanced datasets; 

4. Computational limitations in training and deploying deep models. 

Figure ( 2 ) this research points out the main areas where research needs to be done in 

DR detection with CNNs.  Experts are trying to solve these issues by increasing the 

availability of suitable datasets. coming up with effective ways to process data and 

designing simple but effective deep learning models for real use in medicine. 

 
Figure 2. Studying the limitations in the research of Retinopathy by segmenting the 

lesions with CNN 
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2. Materials and Methods 

Data augmentation and preprocessing were both applied on the laboratory data in 

different ways to enable deep learning models to perform more efficiently and to be 

generalizable. These operations were intended to deliver more and diverse training 

samples and cause the model to cooperate better with the pictures of any quality. 

Subsequently, procedures known as CNN were applied to process the images and 

perform a screening of diabetic retinopathy (DR), and the outcomes of multiplying 

accuracy of their classification were documented. 

2.1. Proposed Solution to Address Dataset Challenges 

2.1.1. Data Pre-processing 

Considering that the quality of images determines the accuracy of a classification to a 

great extent, the corresponding pre-processing was initiated to bring the data to the 

standard form and make it more efficient. Images of worse quality may account to errors 

that decrease the effectiveness of a CNN-based model. Furthermore, the data contained 

the images of the retina in several such scenarios as the images of different people, age 

groups, and light levels. Due to these aspects, some pixel intensities differed without 

linking to the diabetic retinopathy level. 

The difficulties were minimized with preprocessing the images with the extensive 

sequence of functions the OpenCV library offers. Specifically, the geometric 

transformations were performed via cv2. warpAffine and cv2. warpPerspective, whereas 

the filters were applied to improve the appearance of an image were denoising ones. The 

preprocessing involved two main steps only and they were cropping and resizing. 1) 

Cropping of each fundus image was done by maintaining only circular region of eye and 

getting rid of unwanted black areas and marks in context with the patient.  Due to this 

method, the significant parcel of the retina remained intact. The images all were cropped, 

and then they were all put to 300 pixels by 300 pixels.  Due to resizing, the data was 

standardized in terms of dimensions of the input and the accuracy could be learned with 

regard to the resolution. 

"Original Fundus Image Dataset and Retinal Assessment Protocols" 

The investigation was conducted based on data of the hospital Xiangya No. 2 Hospital 

Ophthalmology (XHO), which was nationally known and used experts in diabetic 

retinopathy monitoring and complications. Retina pictures were captured during March 

2016 to October 2016 with the resolution of 1956 x 1934. 

All fundus images were classified based on three factors namely (i) presence of 

diabetic retinopathy (ii) existence of macular edema and (iii) grading capability of the 

image. The cases were identified as symptomatic or asymptomatic with international 

scales of diabetes severity of the disease accepted among clinical practitioners. All of them 

were divided into two categories non-gradeable and gradeable pictures. Only those 

pictures which could be graded, were taken as ones to use in the model. 

The trained ophthalmologists who have more than ten years of experience in grading 

DR made all the annotations to the images. Each picture was characterized by two 

ophthalmologists to guarantee quality control. In the event of the diagnosis under debate, 

the image was not retained in the set so as to ensure the ground truth labels could still be 

compatible. 

Following this rigorous grading process, a total of 1,607 images (607 symptomatic and 

1,000 asymptomatic) were allocated for model development and validation. An 

independent test set comprising 322 images (200 symptomatic and 122 asymptomatic) 

was used to evaluate model performance, as summarized in Table 1. 

Table 1. dataset for classification. 

Class Name Degree of DR Number of Labels For Training For Testing 

Class 0 Nonsymptoms 1000 800 200 

Class 1 Symptoms 607 485 122 
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Training data images (shown in Figure 3) were read and pre-processed into a 

TensorFlow-GPU library. The image processing type of libraries fits exceptionally well in 

this library, since it has very rich set of inbuilt functions which have efficient and 

accelerated computations and therefore when implemented in GPU enabled 

environments, the computations are more efficient. 

One of the most important preprocessing presentation was to reshape the input data 

to maximize the memory capacity and minimization of its computation. The unprocessed 

retinal images which measure 1956 x 1934 pixels each require large memory space which 

might cause more pressure to the RAM and hence slower execution time. In an attempt of 

mitigating this limitation, all the images were scaled down to an average size of 300 x 300 

pixels, thus considerably decreasing the workload without losing important visual 

characteristics that are central to the classification. Figure 4b and 4c show the 

consequences of preprocessing and data augmentation actions, respectively. 

 
Figure 3. Examples of retinal picture frames.  The two frames in the bottom row are 

from individuals with diabetic retinopathy, whereas the first two frames in the top 

row are from healthy participants. 

                     (a)                                                     (b)                                            (c) 

Figure 4. Depiction of the preprocessing and enhancement procedures.  (a) 

Authentic photos.  Pre-processed photos.  (c) Enhanced photos. 

 

2.1.2. Data Augmentation 

Deep learning (DL) models are based on lots of data in order to offer effective work. 

Nevertheless, insubstantiality of data and image noise are some of the reasons which can 

restrict the learning, and the performance of models. To eliminate these challenges, 

samples have to be created through data augmentation such that they do not require an 

increase in the training set through more picture collection. Consequently, the model is 

more dependable and assists in its avoidance of overfitting. 

In the course of the study, the augmentation was conducted with the help of the tools 

found in Keras. Simple augmentation procedures on the images included rotation of 

images (in the race to have the model learn to ignore the effect of image rotation), image 

flipping (horizontally), scaling, clipping, and translating. They allow them to simulate a 

variety of body shapes and images so as to improve they way the model is fitted to 
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different patient cases. Also pictures were cut down in such a way that the model 

concentrated on areas that could contain vital information. 

At the recent past, GANs have been used to supplement data since it is able to create 

realistic images resembling authentic ones.  The methodology in [52] demonstrates that it 

is possible to expand the data in medical imaging using GANs since the information to be 

trained on can be scarce. 

2.1.3. Convolutional Neural Network (CNN) Models 

The study is expected to be able to automatically detect and categorize diabetic 

retinopathy (DR) identified in retinal fundus photographs using CNNs.  Due to these 

special hierarchies sets in CNNs, they can easily learn during the training process, and 

choose and extract valuable information present in medical images. 

The principal components of a CNN structure are convolutional, pooling, and fully 

connected layers.  The convolution layers are responsible to detect local patterns through 

the usage of numerous optimized filters in the training process. They act similarly to 

conventional image-processing kernels, though are setup automatically based on data.  

Max pooling and average pooling assist to minimize data consumed by every layer and 

also minimize the probability of overfitting due to the retention of critical features.  Fully 

connected layers at the output of the network outline the significant features of the 

network into classes arranged by the aforesaid categories. 

"VGGNet"-16 

"VGGNet"-16, a prominent CNN architecture introduced by the Visual Geometry 

Group, was the winner of the 2014 ImageNet Large Scale Visual Recognition Challenge 

(ILSVRC). It consists of 16 layers with learnable weights and approximately 138 million 

parameters, making it a relatively deep and computationally intensive model. 

Despite its large size, "VGGNet"-16 remains a benchmark model for visual tasks due 

to its simple architecture and consistent performance. In this study, "VGGNet"-16 was 

employed for DR screening tasks. A modified and compressed version of the original 

architecture was also utilized, offering the following advantages: 

1. Reduced model size (88.4% smaller than the original VGG16), 

2. Faster training speed (23.86% improvement), 

3. Improved convergence and generalization using residual learning techniques, 

4. Preserved classification accuracy equivalent to the uncompressed model on 

large-scale datasets, such as MIT Places 365-Standard. 

However, while "VGGNet"-16 demonstrates competitive performance, its 

classification accuracy was found to be lower than that of deeper architectures such as 

"ResNet"-50 and "ResNet"-101. 

"ResNet" (50 and 101) 

Residual Networks ("ResNet"), introduced in [34], revolutionized deep learning by 

enabling the successful training of ultra-deep CNNs. "ResNet"-152 achieved first place in 

the 2015 ILSVRC competition, attaining a top-5 classification error of just 3.57%, despite 

having fewer parameters than "VGGNet". 

The core innovation of "ResNet" lies in its residual learning framework, which 

introduces skip (shortcut) connections. These connections allow the network to bypass 

one or more layers, effectively enabling the direct propagation of input features to deeper 

layers. This mechanism alleviates the vanishing gradient problem, ensures information 

preservation, and improves training convergence. 

In traditional CNNs, increasing depth often leads to a degradation in both training 

and test performance beyond a certain point. This is not necessarily due to overfitting, but 

rather a result of optimization difficulties in very deep networks. "ResNet" addresses this 

degradation by facilitating the learning of residual functions, where the network learns 

the difference F(x)=H(x)−xF(x) = H(x) - xF(x)=H(x)−x, rather than the direct mapping 

H(x)H(x)H(x). This formulation ensures that identity mappings are easily learned when 
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additional layers do not contribute positively, thereby enhancing model robustness and 

accuracy. 

In this study, "ResNet"-50 and "ResNet"-101 were selected due to their superior 

performance in deep feature representation and classification tasks. These models 

significantly outperformed "VGGNet"-16 in diabetic retinopathy detection by achieving 

better generalization on the validation set, especially in complex image classification 

scenarios. (Figure 5) 

 
Figure 5. Latest CNN (a) "ResNet"-101, (b) "ResNet"-V1-50, and (c) VGG-16 Architecture. 

 

ResNet-50 is a 50-layers deep convolutional neural network that has been developed 

to work with the issues that deep network faces once they have become very elaborate. 

An ImageNet based version of ResNet 50 was trained on more than one million images.  

That way the feature representations that the model has learned are both robust and 

varied and can be used to multiple image classification tasks, including medical images. 

ResNet -2-101 is also based on ResNet model, but it encompasses a total of 101 layers. 

This network may be trained on ImageNet where it classified images 1,000 distinct 
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categories. Due to a detailed structure, the "ResNet"-101 excels in categorizing images, 

numerous finely-detailed components of which refer to. 

In this research, retinal image datasets were evaluated with the help of VGGNet-16, 

ResNet-50, and ResNet-101 checking whether they had signs of diabetic retinopathy (DR). 

They have been selected due to their potential use and extensive application in various 

forms of classification task. In Figures 5a-c, the architectures are depicted; they refer to the 

architectures of b: ResNet-101, a: ResNet-50 and e: VGGNet-16. Also, the lab dataset 

demonstrated that DR image analysis involving ResNet -101 is superior to resnet- 50 or 

VGGNet- 16. 

2.1.4. Training Process 

To In order to train and test the functionality of the proposed DR framework, the 

TensorFlow framework in Python was applied with models: ResNet -101, ResNet -V1-50, 

VGG-16. These models have been chosen due to their favourable performance, good 

scalability, and ability to accomplish complex work of image classification. 

The networks used input images of 300 x 300 pixels since that is what images taken in 

the retina of the patient were taken to before they were then inputted. The sequence of 

convolution and pooling layers is followed by placement ReLU layer after each group in 

order to introduce non-linearity and increase the capability of the network to 

comprehend. 

The aspect of hyperparameter tuning was instrumental in ensuring better models. As 

opposed to the weights of the model, hyperparameters are not learned; in order to be 

chosen properly, hyperparameters should be chosen on the basis of an empirical analysis. 

In this experiment, different hyperparameters were fine-tuned, including learning rate, 

batch size, the number of epochs, type of optimizer, and a dropout rate, to get the best 

results by classifying 100 percent of the data and reducing overfitting. Table 2 is a 

summary of the particular values and settings of the following hyperparameters applied 

in the implementation of the suggested models. 

Table 2. Parameter tuning in the latest CNN models. 

Description Output Shape 

weight_decay 0.00001 

num_classes 2 

batch_size 8 

val_batch_size 32 

image_height 300 

image_width 300 

image_channels 3 

num_iters 4000 

lr [0.0001, 0.001] 

momentum 0.9 

batch_norm_scale True 

batch_norm_epsilon 1 × 10−5 

batch_norm_decay 0.997 

 

The data utilized in this research consisted of 1,607 retina images that were collected 

by a number of hospitals participating in the research in Iraq. e.g., Baghdad, Basra, Mosul, 

and Dhi Qar. The healthy group had 1,000 images and 607 images revealed presence of 

DR. 

The files were broken into test data and training data so that it became easier to create 

and analyze the model. Of the whole data we took 800 healthy images and 485 defective 

pictures to train, and we reserved 200 healthy images and 122 defective pictures to be used 

in testing. The separation of the cases to normal and pathological components allowed us 

to compare the results of classification. 
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They passed through the processing of all pictures and converted them into tensors 

that can be involved in the convolutional neural networks. The models were then 

established and refined through the process of continuous training on them and tweaking 

the hyperparameters.  I have gone through the process of tuning the learning rate to begin 

at 0.0005 by setting the number of iteration in each training of each image to 4,000. 

Table 2 contains a comprehensive overview of the hyperparameters used in the 

training of the created deep learning models. 

3. Results and Discussion 

Experiment 

The study began by implementing a number of pre-processing operations so that the 

incoming images could be analyzed properly using deep learning. When the training step 

preconditioned the input images by making them smaller, modifying and normalizing, 

Deep CNNs performed better on the laboratory acquired images.  Thereafter, three highly 

developed convolutional neural networks (CNNs) were run to extract examples of DR 

and the accuracy of such networks was calculated.  Not only the correct and wrong 

classifications were counted, but an analysis of errors was particularly studied as well, so 

that a more rigid analysis could be carried out. 

3.1. Dataset and Pre-processing 

The research database used in this research was retrieved by four medical institutions 

in Iraq: Al-Firdaws Private Hospital (Baghdad), Ibn Al-Haytham Teaching Eye Hospital 

(Baghdad), Al- Shami Eye Center- Erbil Branch and Al-Kafeel Specialist Hospital 

(Karbala). It had one major aim, which was to differentiate two categories of the patients, 

those with symptoms and those without symptoms of diabetes. First, the data was 

heterogeneous and some of the images were not organized, unfiltered and most of them 

were irrelevant to diabetes. The dataset was then cleaned and tabulated into two clear 

groups that included the diabetic patients that showed symptoms of retinopathy and the 

diabetic patients that have not shown these symptoms. 

The preprocessing pipeline to which all images were subjected to is aimed at 

alleviating the problems associated with noise and inadequate illumination. Image 

resizing and crop were applied in the preprocessing process. Every ouanine was edited to 

take a focus on a middle circle portion of the fundus that has the most diagnostic features. 

The size of the original images was rather large (1956 x 1934 pixels), which caused serious 

difficulties in the computational terms due to the size of the memory that was required. 

To deal with this, the images were scaled down to 300 x 300 pixels which greatly increased 

speed of processing and consuming fewer resources. 

The total number of pictures that was available initially in the provided dataset was 

607 symptomatic and 1000 asymptomatic. Because of the small sample size, it was 

synthetically oversampled by data augmentation methods. Image rotation and synthetic 

noise generation with the help of opencv were used as augmentation methods as 

presented in Table 3 as mythough in Figure 6. Before the augmentation, the training set 

included 800 asymptomatic images and 485 symptomatic ones and the test set 322 images. 

There was an increase in size of the training set to 1982 and 1204 images in the 

asymptomatic and symptomatic class post-augmentation respectively. 

The training process was configured with an initial learning rate of 0.001, a 

momentum value of 0.9, a batch size of 800, and 3000 training iterations.(Table 3) 

Table 3. The number of images before and after the augmentation process. 

 
3.2. Results and Discussion 

In the first experiment, the VGG-16 convolutional neural network architecture 

(containing 16 layers) was performed to identify the input retinal fundus images. The 
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architecture uses several layers of convolutions in different scales and alternates with 

layers of the argmax-pooling operation that decreases spatial sizes, eliminates overfitting, 

and speeding up the training. 

The VGG-16 model was able to successfully separate the training and testing classes 

as it is stated in the Table 4. The overall accuracy of classification was, but, modest. The 

main cause of this limitation has been associated with the vanishing gradient problem 

which makes the model to have difficulties in learning within deep architectures. What is 

more, the comparatively small depth of network did not seem to allow retrieval of the 

complex and hierarchical features required to achieve the best diabetic retinopathy 

indicators classification in the high-resolution retinal photos. 

 
Figure 6. Representative examples from the training dataset illustrating the pre-

processing steps employed to augment the input data. (a) Retinal images exhibiting 

symptoms of diabetic retinopathy. (b) Retinal images without any observable 

symptoms. (c) Augmented images generated through left and right rotational 

transformations. (d) Augmented images enhanced with synthetic noise to increase 

data variability and improve model generalization. 

Table 4. Comparative performance evaluation of various classification approaches 

prior to the application of data augmentation techniques. 

Model Training Accuracy (%) Training Loss (%) Testing Accuracy (%) 

"ResNet"-101 80.88 40.1 79.76 

"ResNet"-50 79.7 37.6 71.8 

"VGGNet"-16 64.4 67.32 62.11 

 

In the second experiment, the "ResNet"-50 architecture was used that has 50 

convolutional layers with the organizational structure built on residual blocks. Such 

residual links are particularly crafted in order to overcome the problem of vanishing 

gradient experienced in deep neural networks. Every residue block has an individual 

number of convolutional blocks and scales as shown in Figure 5 where the input of a given 

block is added to the output of the block. This is an architecture design that improves 

information flow between layers and more abilities of feature extraction. The model 

ResNet-50 demonstrated better classification performance than VGG-16, and it might be 

explained by a residual learning framework and greater depth applied in that model. 

To continue the increase of the classification performance, the last experiment had a 

deeper architecture named ResNet-101 comprising 101 convolutional layers. The greater 

depth enables more abstract and complicated aspects to be learned in the input images to 

give a better generalization in the model. Although deeper networks are usually prone to 

overfitting, the residual of the ResNet-101 lessens this chance of overfitting. According to 

Tables 4 and 5, the accuracy on both the training and testing data proved that ResNet-101 

was the most accurate in classification. 
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In every experiment, the cross-entropy loss was used in all experiments so that it can 

direct the search and modify model weights in the training process. The arithmetic mean 

of the results of the classification was used to assess the model accuracy on the set of 

testing data. 

The results of the CNN models namely, VGG-16, ResNet-50, and ResNet-101 are 

graphically displayed in Figures 7a 9b". The graphs represent the iterations of the training 

process (x-axis) versus the values of accuracy and loss (y-axis) of the training process. The 

performance and stability were most promising in terms of "ResNet"-101 among the three 

models and showed more potential in recognizing retinal images with better capability of 

distinguishing between the healthy and diabetic retinopathy-affected retina images". 

Altogether, the findings show that the offered framework, especially, the model 

known as the "ResNet"-101, can be theoretical and practical to the classification of images 

captured by XHO dataset better than the model of one known as the "ResNet"-50 and the 

one of the VGG-16, in terms of both accuracy and stability. 

Table 5. Comparative performance evaluation of various classification approaches 

following the application of data augmentation techniques. 

Model Training Accuracy (%) Training Loss (%) Testing Accuracy (%) 

"ResNet"-101 98.88 34.99 98.82 

"ResNet"-50 93 34 91.5 

"VGGNet"-16 71.39 61.48 64.11 

 

 
                                                                                                                                      (a) 

 
                                                                                                                                  (b) 

Figure 7. Training performance of the "ResNet"-101 model, illustrating (a) the 

accuracy progression and (b) the loss reduction over successive training iterations. 

 



 838 
 

  
Central Asian Journal of Mathematical Theory and Computer Sciences 2025, 6(4), 825-845     https://cajmtcs.centralasianstudies.org/index.php/CAJMTCS 

The results demonstrated by classification accuracies shown in Tables 4 and 5 indicate 

the increase of performance due to data augmentation techniques used. It has been seen 

that CNN models trained by augmented data perform better than models trained with 

non-augmented data. This is majorly attributed to the fact that, due to the simulating real-

world variation characteristics of data augmentation, this strategy leads to a significant 

improvement in the robustness of the model, and increases the generalization ability of 

the model when inferring. 

Moreover, the XHO dataset exhibited an imbalanced distribution, with a greater 

number of normal (non-DR) images compared to images displaying signs of diabetic 

retinopathy (DR). To mitigate this imbalance, the dataset was initially categorized into 

two stages of DR and subsequently partitioned into training and testing subsets. 

Preprocessing techniques were then applied to enhance the quality of the retinal images—

an essential step, as poor image quality can significantly impair the feature extraction 

capabilities of deep learning models and, consequently, reduce classification accuracy. 

Ensuring consistency in image quality and enhancing salient image features are therefore 

critical to achieving reliable classification outcomes. 

As convolutional neural network architectures and medical imaging datasets 

continue to evolve, and as real-time diagnostic capabilities become increasingly feasible, 

the clinical applicability of models such as "ResNet"-101, "ResNet"-50, and VGG-16 for 

diabetic retinopathy screening is expected to grow. These models have the potential to 

serve as valuable tools for ophthalmologists, supporting early and accurate detection of 

DR in clinical practice.(Figure 8) 

 
(a) 

  
(b) 

Figure 8. Training performance of the "ResNet"-50 model, illustrating (a) the 

progression of classification accuracy and (b) the reduction in loss over successive 

training iterations. 
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3.3. "Performance Evaluation" 

"The proposed diabetic retinopathy (DR) detection approach of the ResNet-101, was 

tested on various openly available retinal image datasets, besides the in-house XHO data. 

In particular, the assessment of the approach involved the High-Resolution Fundus (HRF) 

dataset,  comprising 30 images with a resolution of 3304 × 2336 pixels [53]; the Structured 

Analysis of the Retina (STARE) dataset, containing 20 images of size 700 × 605 pixels [54]; 

the DIARETDB0 dataset, consisting of 130 images with dimensions of 1500 × 1152 pixels 

[55]; and the MESSIDOR dataset, which includes 1200 images at a resolution of 1440 × 960 

pixels" [56]. The XHO dataset used in this study comprises 1607 retinal images 

standardized to 300 × 300 pixels. 

For evaluation purposes, it was decided to group the testing datasets into those with 

no DR signs and those that were confirmed as having DR by expert ophthalmologists.  

Among the overall 2987 images labeled as DR, 1089 were used in the testing phase.  The 

proposed method was tested using normal retinal images to check if it can specifically 

identify cases without DR.(Figure 9) 

Table 6 summarizes all the datasets used in the study and mentions the number of 

images, their image resolutions, and the distribution of the classes. 

 
(a) 

 

(b) 

Figure 9. Both the accuracy and the loss curves for "VGGNet"-16 as it is trained. 
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Table 6. Details of everything in the database. 

Dataset Number of Images No DR DR 

XHO datasets 1607 1000 607 

HRF datasets 30 15 15 

STARE datasets 20 12 8 

DIARETDB0 datasets 130 20 110 

MESSIDOR 1200 851 349 

Total 2987 1898 1089 

 

3.4. Performance Evaluation Criteria 

The chosen models of neural networks were implemented and their performances 

were then measured against a pack of steady postulated performance measures that are 

mostly used in medical image classification systems. These were precision (ACC), 

specificity (SP), sensitivity (SEN), as well as area under the receiver operating 

characteristic curve (AUC). These (key) indicators were used to compute the positive 

predictive value (PPV) to evaluate the model accuracy in the true positive cases. Besides, 

two more evaluation metrics were used, including negative predictive value (NPV) and 

the F1 score (F1). All these metrics give a hint of various performance of the model studied.  

Accuracy (ACC) estimates the percentage of the right classification of the images 

compared with the number of samples, providing an overall estimate of the success of 

classification. Specificity (SP) is the one that assesses how well the model discriminates 

non-diseased (non-DR) cases, thus, its ability to achieve low false positives. Sensitivity 

(SEN) or recall will measure the proportion of the number of true levels (the number of 

actual DR cases that were actually positive) that the model properly classifies into the 

positive category or the true positive, which reflects the performance of the model to 

identify positive cases of diabetic retinopathy. The AUC gives an overview of the 

diagnostic capacity of the model at all levels of the classification range.  In the meantime, 

PPV and NPV give the reflection of trustworthiness of affirmative and negative prognoses 

respectively. F1 score, which is the function of both precision and recall, is especially 

helpful in cases when the classes are unevenly distributed since it takes into account such 

tradeoff between false negatives and false positives. 

ROC curve eases the comprehension of the way of balancing sensitivity and 

specificity during algorithm assessment. The AUC can assist us in describing how well 

the model may discriminate.  The PPV is a proportion of correctly labeled DR-positive 

images out of the number of images that were granted as DR.  In contrast, NPV represents 

the sum of the number of non-DR images, which have been correctly identified as non-

DR out of the entire numbers that are predicted to be non-DR.All of these metrics join to 

help compare the diagnostic results of the "ResNet"-101 algorithm to other algorithms. 

Music pieces are measured using these formulas in mathematics. 

 

SP =
𝑇𝑁

𝑇𝑁+𝐹𝑃
                                                             (1) 

SEN =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                         (2) 

ACC =
(𝑇𝑁+𝑇𝑃)

(𝑇𝑁+𝑇𝑃+𝐹𝑁+𝐹𝑃)
                                        (3) 

PPV =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                         (4) 

NPV =
𝑇𝑁

𝑇𝑁+𝐹𝑁
                                                       (5) 

F1score = 2 ∗ 
Precision ∗ Recall 

Precision+ Recall 
                         (6) 

Those diabetic retinopathy (DR) images that are missing a diagnosis of DR are called 

false negative (FN). to put it another way, FPs are errors where healthy images get labeled 

as having DR.  Correctly identified DR and non-DR images are called true positive (TP) 

and true negative (TN). 

"ResNet"-101 was checked with several measures, among them accuracy (ACC), 

sensitivity (SEN), specificity (SP), and the F1 score.  Two-thousand nine hundred and 

eighty-seven fundus retinal photos taken from various public sources were used to assess 
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the model’s ability to detect DR. As shown in Table 7, the "ResNet"-101 model’s evaluation 

led to the following ACC, SP, SEN, area under the ROC curve, and F1 score results. 

"For the "HRF, DRIVE, STARE, MESSIDOR, DIARETDB0, and DIARETDB1" datasets, 

"AUC" values were measured, giving useful information about how well the model works 

on various images". The graphs in Figure 10 clearly show how sensitivity and specificity 

differ for each of the datasets.(Figure 10) 

Results from the "ResNet"-101-based system were compared to those from recent top-

performing approaches to see how well it works.  As demonstrated in Table 8, "ResNet"-

101 does a better job at finding DR than the other two models and is likely a reliable 

diagnostic method. 

Table 7. Restated, the "ResNet"-101 CNN model was used to detect DR from four 

different datasets. 

Dataset Test Images Correctly 

Detected 
Accuracy (%) Sensitivity (%) Specificity (%) F1 Score (%) AUC 

(%) 

Al-Firdaws 

Hospital 

(Baghdad) 

dataset 

200 196 98 97.14 97.65 97.36 98.55 

Ibn Al-

Haytham 

Teaching Eye 

Hospital  

(Baghdad) 

datasets 

30 30 100 99.98 99.98 99.98 99.99 

Al-Shami Eye 

Center - Erbil 

branch datasets 

20 19 95 94.96 95.11 95.03 95.04 

Al-Kafeel Specialist 

Hospital (Karbala) 

datasets 

110 105 95.45 95.39 99.38 95.45 95.46 

Westeye Eye 

Hospital in 

)Sulaymaniyah) 

datasets 

349 347 99.42 99.45 99.38 99.41 99.42 

Total 360 349 97 96.87 98.03 96.95 97.26 

 

Table 8. Looking at the similar techniques applied to DR Images by others and what we 

have done. 

Evaluated 

Parameter 

[57] [58] [59] Propos

ed 

Metho

d 

[60] [39] [61

] 

[62] [63] 

Number of 

Classes 

 2  5 4 5 

Detect Lesion  No  No No Yes 

Dataset  private dataset  Kaggle Messidor DD

R 

Performance ACC 94.23

% 

88.21% 98.7% 98.88% 63.23% 95.6% 98.15% 96.35% 82.84

% 

Measure AUC 0.9823 0.946 - 98.55% - 0.978 - - - 
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Figure 10. ROC plot for retinal 

4. Conclusion 

Automatic identification of diabetic retinopathy (DR) within fundus images could go 

a long way in helping ophthalmologists to greatly reduce the time of diagnosis as well as 

improving early diagnosis. Here, the recovery of preprocessing and regularizing of the 

retinal datasets, both of which were received in the laboratory, were done in a 

comprehensive way in a bid to ensure the deep learning-based classification system is 

optimized in performance. It was found during initial inquiry that the small training 

dataset size negatives the model performances and qualifies the requirements of sufficient 

data diversity and volumes. 

Besides, this study proved that DR classification can be successfully tackled as binary 

classification task to screen the population at the national level using convolutional neural 

networks (CNNs). One of the considered structures, namely, ".ResNet"-101, ".ResNet"-50 

and VGG-16 had the best efficacy. The accuracy of the model in testing was 98.82 percent 

with corresponding training accuracy of 98.88 percent and a training loss of 34.99 percent". 

Upon testing on five benchmark datasets "HRF, STARE, DIARETDB0, MESSIDOR, 

and XHO", ResNet-101 achieved a classification accuracy of 98%, 100%, 95%,95.45 and 97 

respectively. Such findings indicate that convolutional neural network models can be 

trained to capture the distinguishing characteristics of DR using fundus images and that 

advanced CNN can train the features of DR in fundus images. 

Balance of the quality and classes of datasets is a critical factor in building powerful 

DR detection systems. Future research ought to concentrate on synthesizing various 

datasets to create a more capable training set so as to combat the imbalance in data. 

Although the existing CNNs models perform very well when applied to binary 

classification, these models cannot cope with the fine-grained classification, or the multi-

stages of DR severity. As such, advances will be based on extending these architectures 

by adding more layers and new designs of architectures together with the ability to 

classify in real-time to allow more accurate and scalable detection of DR in clinical 

situations. 

 

REFERENCES 

[1] R. Reguant, S. Brunak, and S. Saha, “Understanding inherent image features in CNN-based assessment of diabetic 

retinopathy,” Sci. Rep., vol. 11, p. 9704, 2021. 

[2]  F. Aguirre, A. Brown, N. H. Cho, G. Dahlquist, S. Dodd, T. Dunning, M. Hirst, C. Hwang, D. Magliano, C. 

Patterson, et al., IDF Diabetes Atlas, 6th ed. Basel, Switzerland: Int. Diabetes Fed., 2013. 



 843 
 

  
Central Asian Journal of Mathematical Theory and Computer Sciences 2025, 6(4), 825-845     https://cajmtcs.centralasianstudies.org/index.php/CAJMTCS 

[3]  D. S. Ting, K. A. Tan, V. Phua, G. S. Tan, C. W. Wong, and T. Y. Wong, “Biomarkers of diabetic retinopathy,” 

Curr. Diabetes Rep., vol. 16, p. 125, 2016. 

[4]  R. R. Bourne, G. A. Stevens, R. A. White, J. L. Smith, S. R. Flaxman, H. Price, J. B. Jonas, J. Keeffe, J. Leasher, K. 

Naidoo, et al., “Causes of vision loss worldwide, 1990–2010: A systematic analysis,” Lancet Glob. Health, vol. 1, 

no. 6, pp. e339–e349, 2013. 

[5] N. Cheung, P. Mitchell, and T. Y. Wong, “Diabetic retinopathy,” Lancet, vol. 376, pp. 124–136, 2010. 

[6]  K. Kroenke, “Telemedicine screening for eye disease,” JAMA, vol. 313, pp. 1666–1667, 2015. 

[7] DCCT/EDIC Research Group, D. M. Nathan, I. Bebu, D. Hainsworth, R. Klein, W. Tamborlane, G. Lorenzi, R. 

Gubitosi-Klug, and J. M. Lachin, “Frequency of evidence-based screening for retinopathy in type 1 diabetes,” N. 

Engl. J. Med., vol. 376, pp. 1507–1516, 2017. 

[8] J. C. Chan, V. Malik, W. Jia, T. Kadowaki, C. S. Yajnik, K. H. Yoon, and F. B. Hu, “Diabetes in Asia: Epidemiology, 

risk factors, and pathophysiology,” JAMA, vol. 301, pp. 2129–2140, 2009. 

[9]  N. G. Congdon, D. S. Friedman, and T. Lietman, “Important causes of visual impairment in the world today,” 

JAMA, vol. 290, pp. 2057–2060, 2003. 

[10]  S. M. Marshall and A. Flyvbjerg, “Prevention and early detection of vascular complications of diabetes,” BMJ, 

vol. 333, pp. 475–480, 2006. 

[11]  A. Hutchinson, A. McIntosh, J. Peters, C. O’keeffe, K. Khunti, R. Baker, and A. Booth, “Effectiveness of screening 

and monitoring tests for diabetic retinopathy—A systematic review,” Diabet. Med., vol. 17, pp. 495–506, 2000. 

[12]  R. Taylor and D. Batey, Handbook of Retinal Screening in Diabetes: Diagnosis and Management. Hoboken, NJ, 

USA: Wiley, 2012. 

[13]  V. Gulshan, L. Peng, M. Coram, M. C. Stumpe, D. Wu, A. Narayanaswamy, S. Venugopalan, K. Widner, T. 

Madams, J. Cuadros, et al., “Development and validation of a deep learning algorithm for detection of diabetic 

retinopathy in retinal fundus photographs,” JAMA, vol. 316, pp. 2402–2410, 2016. 

[14]  D. S. W. Ting, C. Y. L. Cheung, G. Lim, G. S. W. Tan, N. D. Quang, A. Gan, H. Hamzah, R. Garcia-Franco, I. Y. 

San Yeo, S. Y. Lee, et al., “Development and validation of a deep learning system for diabetic retinopathy and 

related eye diseases using retinal images from multiethnic populations with diabetes,” JAMA, vol. 318, pp. 2211–

2223, 2017. 

[15]  S. Chaudhuri, S. Chatterjee, N. Katz, M. Nelson, and M. Goldbaum, “Detection of blood vessels in retinal images 

using two-dimensional matched filters,” IEEE Trans. Med. Imaging, vol. 8, no. 3, pp. 263–269, 1989. 

[16]  C. Sinthanayothin, J. F. Boyce, H. L. Cook, and T. H. Williamson, “Automated localisation of the optic disc, fovea, 

and retinal blood vessels from digital colour fundus images,” Br. J. Ophthalmol., vol. 83, pp. 902–910, 1999. 

[17] C. E. Baudoin, B. J. Lay, and J. C. Klein, “Automatic detection of microaneurysms in diabetic fluorescein 

angiography,” Rev. Epidemiol. Sante Publique, vol. 32, pp. 254–261, 1984. 

[18]  N. Silberman, K. Ahrlich, R. Fergus, and L. Subramanian, “Case for automated detection of diabetic retinopathy,” 

in Proc. AAAI Spring Symp. Series, Stanford, CA, USA, Mar. 22–24, 2010. [Online]. Available: 

https://nyuscholars.nyu.edu/en/publications/case-for-automated-detection-of-diabetic-retinopathy 

[19]  D. G. Lowe, “Distinctive image features from scale-invariant key points,” Int. J. Comput. Vis., vol. 60, pp. 91–110, 

2004. 

[20]  T. Lindeberg, “Scale-invariant feature transform,” Scholarpedia, vol. 7, p. 10491, 2012. 

[21]  R. Pires, H. F. Jelinek, J. Wainer, E. Valle, and A. Rocha, "Advancing bag-of-visual-words representations for 

lesion classification in retinal images," PLoS ONE, vol. 9, p. e96814, 2014, doi: 10.1371/journal.pone.0096814. 

[22]  H. Bay, T. Tuytelaars, and L. Van Gool, "Surf: Speeded up robust features," in European Conference on Computer 

Vision, Berlin, Heidelberg: Springer, 2006, pp. 404–417. 

[23]  L. Séoud, T. Faucon, T. Hurtut, J. Chelbi, F. Cheriet, and J. P. Langlois, "Automatic detection of microaneurysms 

and haemorrhages in fundus images using dynamic shape features," in Proc. IEEE 11th Int. Symp. Biomed. 

Imaging (ISBI), Beijing, China, Apr. 2014, pp. 101–104. 

[24]  L. Seoud, J. Chelbi, and F. Cheriet, "Automatic grading of diabetic retinopathy on a public database," in 

Ophthalmic Medical Image Analysis Int. Workshop, Iowa City, IA, USA: Univ. of Iowa, 2015. 

[25]  M. J. Paranjpe and M. N. Kakatkar, "Automated diabetic retinopathy severity classification using support vector 

machine," Int. J. Res. Sci. Adv. Technol., vol. 3, pp. 86–91, 2013. 

[26]  A. Liaw and M. Wiener, "Classification and regression by randomForest," R News, vol. 2, pp. 18–22, 2002. 

[27] T. Joachims, Making large-scale SVM learning practical, Tech. Rep., Univ. of Dortmund, 1998. [Online]. Available: 

https://www.econstor.eu/handle/10419/77178 



 844 
 

  
Central Asian Journal of Mathematical Theory and Computer Sciences 2025, 6(4), 825-845     https://cajmtcs.centralasianstudies.org/index.php/CAJMTCS 

[28] T. Walter, J. C. Klein, P. Massin, and A. Erginay, "A contribution of image processing to the diagnosis of diabetic 

retinopathy—detection of exudates in color fundus images of the human retina," IEEE Trans. Med. Imaging, vol. 

21, pp. 1236–1243, 2002. 

[29] M. D. Zeiler and R. Fergus, "Visualizing and understanding convolutional networks," in European Conf. 

Computer Vision (ECCV), Zurich, Switzerland, Sep. 2014, Cham: Springer, pp. 818–833. 

[30]  Z. Wang and J. Yang, "Diabetic retinopathy detection via deep convolutional networks for discriminative 

localization and visual explanation," in Proc. Workshops 32nd AAAI Conf. Artif. Intell., New Orleans, LA, USA, 

Feb. 2017. 

[31]  Y. Yang, T. Li, W. Li, H. Wu, W. Fan, and W. Zhang, "Lesion detection and grading of diabetic retinopathy via 

two-stages deep convolutional neural networks," in Int. Conf. Med. Image Computing and Computer-Assisted 

Intervention (MICCAI), Cham: Springer, 2017, pp. 533–540. 

[32]  S. Wang, Y. Yin, G. Cao, B. Wei, Y. Zheng, and G. Yang, "Hierarchical retinal blood vessel segmentation based 

on feature and ensemble learning," Neurocomputing, vol. 149, pp. 708–717, 2015. 

[33]  A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet classification with deep convolutional neural networks," 

Adv. Neural Inf. Process. Syst., vol. 25, pp. 1097–1105, 2012. 

[34]  C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, "Inception-v4, inception-ResNet and the impact of residual 

connections on learning," in Proc. 31st AAAI Conf. Artif. Intell., San Francisco, CA, USA, Feb. 2017. 

[35]  O. M. Parkhi, A. Vedaldi, and A. Zisserman, Deep Face Recognition, Univ. of Oxford, 2015. [Online]. Available: 

https://www.robots.ox.ac.uk/~vgg/publications/2015/Parkhi15/parkhi15.pdf 

[36]  K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale image recognition," arXiv 

preprint arXiv:1409.1556, 2014. 

[37]  C. Szegedy et al., "Going deeper with convolutions," in Proc. IEEE Conf. Computer Vision and Pattern 

Recognition (CVPR), Boston, MA, USA, Jun. 2015, pp. 1–9. 

[38]  K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," in Proc. IEEE Conf. Computer 

Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, Jun. 2016, pp. 770–778. 

[39]  S. Wan, Y. Liang, and Y. Zhang, "Deep convolutional neural networks for diabetic retinopathy detection by image 

classification," Comput. Electr. Eng., vol. 72, pp. 274–282, 2018. 

[40]  W. L. Alyoubi, M. F. Abulkhair, and W. M. Shalash, "Diabetic retinopathy fundus image classification and lesions 

localization system using deep learning," Sensors, vol. 21, p. 3704, 2021. 

[41]  M. K. Behera, R. Mishra, A. Ransingh, and S. Chakravarty, “Prediction of different stages in diabetic retinopathy 

from retinal fundus images using radial basis function based SVM,” Indian J. Sci. Technol., vol. 13, pp. 2030–2040, 

2020. [CrossRef] 

[42] M. Sankar, K. Batri, and R. Parvathi, “Earliest diabetic retinopathy classification using deep convolution neural 

networks,” Int. J. Adv. Eng. Technol., vol. 10, p. M9, 2016. 

[43]  G. Lim, M. L. Lee, W. Hsu, and T. Y. Wong, “Transformed representations for convolutional neural networks in 

diabetic retinopathy screening,” in Proc. Workshops at the 28th AAAI Conf. on Artificial Intelligence, Québec 

City, QC, Canada, Jul. 2014. 

[44]  H. Pratt, F. Coenen, D. M. Broadbent, S. P. Harding, and Y. Zheng, “Convolutional neural networks for diabetic 

retinopathy,” Procedia Comput. Sci., vol. 90, pp. 200–205, 2016. [CrossRef] 

[45]  Kaggle, “Diabetic retinopathy detection challenge,” 2016. [Online]. Available: http://www.kaggle.com/c/diabetic-

retinopathy-detection/data. [Accessed: Jun. 1, 2022]. 

[46]  B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, “Learning deep features for discriminative 

localization,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, Jun. 

2016, pp. 2921–2929. 

[47]  M. Lin, Q. Chen, and S. Yan, “Network in network,” arXiv preprint arXiv:1312.4400, 2013. 

[48] S. A. Lekshmi and G. M. Rajathi, “Detection of glaucoma and diabetic retinopathy using image processing 

technique by Raspberry Pi,” Indian J. Sci. Technol., vol. 12, p. 29, 2019. [CrossRef] 

[49]  C. H. Bindu and G. S. Sravanthi, “Retinopathy detection of eye images in diabetic patients,” Indian J. Sci. Technol., 

vol. 12, p. 3, 2019. [CrossRef] 

[50]  R. Sarki, K. Ahmed, H. Wang, Y. Zhang, J. Ma, and K. Wang, “Image preprocessing in classification and 

identification of diabetic eye diseases,” Data Sci. Eng., vol. 6, pp. 455–471, 2021. [CrossRef] 

[51] A. G. P. Henry and A. Jude, “Convolutional neural-network-based classification of retinal images with different 

combinations of filtering techniques,” Open Comput. Sci., vol. 11, pp. 480–490, 2021. [CrossRef] 



 845 
 

  
Central Asian Journal of Mathematical Theory and Computer Sciences 2025, 6(4), 825-845     https://cajmtcs.centralasianstudies.org/index.php/CAJMTCS 

[52] M. Frid-Adar, E. Klang, M. Amitai, J. Goldberger, and H. Greenspan, “Synthetic data augmentation using GAN 

for improved liver lesion classification,” in Proc. 2018 IEEE 15th Int. Symp. Biomedical Imaging (ISBI), 

Washington, DC, USA, Apr. 2018, pp. 289–293. 

[53]  University of Erlangen-Nuremberg, High Resolution Fundus (HRF) Image Database. Erlangen, Germany: Univ. 

Erlangen-Nuremberg, 2014. [Online]. Available: http://www5.cs.fau.de/research/data/fundus-images/. 

[Accessed: May 2, 2021]. 

[54]  M. Goldbaum, Structured Analysis of the Retina, 2013. [Online]. Available: 

http://www.ces.clemson.edu/ahoover/stare/. [Accessed: May 24, 2021]. 

[55]  DIARETDB0 Database, Medical Image Understanding and Analysis, Mar. 2014. [Online]. Available: 

http://www.it.lut.fi/project/imageret/diaretdb. [Accessed: Mar. 24, 2022]. 

[56] E. Decenciere, X. Zhang, G. Cazuguel, B. Lay, B. Cochener, and C. Trone, “Feedback on a publicly distributed 

image database: The MESSIDOR database,” Image Anal. Stereol., vol. 33, pp. 231–234, 2014. [CrossRef] 

[57] T. Li, Y. Gao, K. Wang, S. Guo, H. Liu, and H. Kang, “Diagnostic assessment of deep learning algorithms for 

diabetic retinopathy screening,” Inf. Sci., vol. 501, pp. 511–522, 2019. [CrossRef] 

[58]  Y. P. Liu, Z. Li, C. Xu, J. Li, and R. Liang, “Referable diabetic retinopathy identification from eye fundus images 

with weighted path for convolutional neural network,” Artif. Intell. Med., vol. 99, p. 101694, 2019. [CrossRef]  

[59] H. Jiang, K. Yang, M. Gao, D. Zhang, H. Ma, and W. Qian, “An interpretable ensemble deep learning model for 

diabetic retinopathy disease classification,” in Proc. 2019 41st Annu. Int. Conf. IEEE Eng. Medicine and Biology 

Society (EMBC), Berlin, Germany, Jul. 2019, pp. 2045–2048. 

[60] S. Das, K. Kharbanda, M. Suchetha, R. Raman, and E. Dhas, “Deep learning architecture based on segmented 

fundus image features for classification of diabetic retinopathy,” Biomed. Signal Process. Control., vol. 68, p. 

102600, 2021. [CrossRef] 

[61]  X. Wang, Y. Lu, Y. Wang, and W. B. Chen, “Diabetic retinopathy stage classification using convolutional neural 

networks,” in Proc. 2018 IEEE Int. Conf. Information Reuse and Integration (IRI), Salt Lake City, UT, USA, Jul. 

2018, pp. 465–471. 

[62] S. H. Khan, Z. Abbas, and S. D. Rizvi, “Classification of diabetic retinopathy images based on customised CNN 

architecture,” in Proc. 2019 Amity Int. Conf. Artificial Intelligence (AICAI), Dubai, UAE, Feb. 2019, pp. 244–248. 

[63] T. Shanthi and R. S. Sabeenian, “Modified AlexNet architecture for classification of diabetic retinopathy images,” 

Comput. Electr. Eng., vol. 76, pp. 56–64, 2019. [CrossRef] 

 

 


