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Abstract: This paper introduces the concept of rough k-space within the framework of rough set 

theory. The primary aim of this work is to define rough k-space and explore its properties, including 

rough continuity, homeomorphisms, and topological characteristics. Specifically, it is shown that the 

restriction of a rough continuous function to any rough  compact subset of a rough space remains 

rough continuous. Additionally, the cross product of a rough k-space with a rough compact T₂-space 

results in a rough k-space. The study also highlights key hereditary and topological properties of 

rough k-spaces. The novelty of this research lies in its extension of rough set theory to include the 

concept of rough k-spaces, which integrates topological and rough set properties, and introduces a 

new approach to understanding the interaction between rough sets and continuous functions. 

Furthermore, the paper provides detailed results on the continuity and  homeomorphism properties 

of rough k-spaces, offering a fresh perspective on their application in mathematical and 

computational contexts. The implications of these findings are significant for further research in 

rough topology, particularly in the development of robust mathematical models for rough set theory 

and its applications in areas such as decision-making, knowledge discovery, and artificial 

intelligence. 

Keywords: Hausdorff property; Kelley-space; rough set; rough topological space; rough Kelley 

space; rough open map; rough closed map 

1. Introduction 

Some drawbacks are there in category of CW complexes. A well-known fact is that 

product of two CW complexes spaces not necessary be a CW complex [1], [2]. A suitable 

condition for proving this case presented by Whitehead and it is written k-space. He 

provided a Hausdorff space as a necessary condition in his definition. Subsequently, in 

1954, Cohen utilized Whitehead’s definition to establish that the Cartesian product of two 

spaces constitutes a k-space if one is locally compact Hausdorff and the other is a k-space 

[3]. In 1955, Kelley as an alternative defined k-space without referencing Hausdorff spaces, 

presenting the final topology for the embeddings of its compact closed subspaces. Kelley 

space was another name for such spaces. However, the Hausdorff principle was applied 

in another formula to guarantee the closedness of compact subsets. [4], [5]. Zdzisław 

Pawlak, a Polish computer scientist, developed a novel idea in 1982 to categorize objects 

and imprecise information addressing as rough set theory. It met the upper and lower 

approximations of the original set, two exact concepts that were the same as its 

approximations. The imperfection is recognised by boundary region. When its boundary 
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region is null, this leads to the set is exact or crisp, otherwise it is rough. Furthermore, the 

interior of the set represented by the lower approximation and the upper approximation 

represents the closure, this set depending on an equivalence relation [6]. For this, rough 

spaces, which provided lower and upper approximations of any subset, were 

demonstrated by Thivagar et al. In fact, a lot of cases solved using these spaces. Also, in 

the same year, in 2012, Mathew and John satisfied numerous rough space conditions by 

using a novel topological technique for rough sets [7]. Four years later, Ravindran and 

Dhivya introduced a fresh study that took into account compactness and connectivity in 

rough spaces by incorporating Mathew's method into John's. They also worked out the 

rough separation terms T1 and T2 [8]. 

During this paper, a new concept is presented in rough theory which is rough 𝑘-space. 

Our goal is to present a few of this term's characteristics and how a rough 

homeomorphism effects on such spaces. Overall, the second section handles the basic 

principles like definition of k- space, roughness of a set, rough topology and few related 

properties. The third section contains major outcomes regarding the concepts of rough 𝑘-

space, rough continuity, rough homeomorphism, and cross product . 

2. Materials and Methods 

PRELIMINARIES 

2.1 Definition: A Hausdorff topological space (X, 𝜏) is called 𝒌­𝒔𝒑𝒂𝒄𝒆 provided that for 

each subset 𝐹 of 𝑋 satisfying 𝐹 ∩ 𝐶 is closed in 𝐶 (equivalently, in X) for every compact 

subset 𝐶 of 𝑋, then 𝐹 is itself closed. 

2.2 Proposition: If   𝑓  is a map from a  𝑘­space (𝑋, τ)  into a topological space (𝑌, 𝛾)  then 

𝑓  is continuous (cont.) if for any compact set 𝐶 ⊆ 𝑋 , 𝑓 | 𝐶 ( restriction of 𝑓 by 𝐶 ) is 

continuous.  

2.3 Proposition: The Cartesian product (𝑋 × 𝑌) of  a 𝑘­space (𝑋, τ) and a compact 

Hausdorff space (𝑌, 𝛾), is also a k- space. 

Suppose we have a non empty universe U, and an equivalence relation 𝑅 on 𝑈 is said 

to be an indiscernibility relation. Then the order pair  (𝑈, 𝑅 ) is said to be an 

approximation space [1]. For a subset 𝑋 of 𝑈 we need to specify the set 𝑋 due to the 

relation 𝑅, we associate two exact sets bellow called upper and lower approximations 

supposing 𝑅𝑥 represents the equivalence class related to 𝑥.  

2.4 Definition [3]: In an approximation space (𝑈, 𝑅 ) if 𝑋 is any set in 𝑈 then: 

(1) 𝑅∗(𝑋)  = ⋃{ 𝑥 ∈ 𝑈: 𝑅𝑥 ⊆ 𝑋 } is said to be the lower approximation (l. approx.) of 𝑋. 

(2) 𝑅∗(𝑋)  = ⋃{ 𝑥 ∈ 𝑈: 𝑅𝑥 ⋂ 𝑋 ≠ ∅ } is said to be the upper approximation (u. approx.) of 

𝑋. 

(3) 𝐵𝑁𝑅(𝑋) =  𝑅∗(𝑋) − 𝑅∗(𝑋) is said to be the boundary of 𝑋. 

(4) A set 𝑋 is said to be  rough set (r- set) if the boundary region of 𝑋 is not null, otherwise 

it is exact.  

2.5 Example: Consider, U =  {𝑎, 𝑏, 𝑐, 𝑑} and  
𝑅 =  {(𝑎, 𝑎), (𝑏, 𝑏), (𝑐, 𝑐), (𝑑, 𝑑), (𝑎, 𝑐), (𝑐, 𝑎)}.  

If 𝑋 = {𝑎, 𝑑}, then we have U/𝑅 = {{𝑎, 𝑐}, {𝑏}, {𝑑}}.  

We have 𝑅∗(𝑋) = {𝑑}, 𝑅∗(𝑋) = {𝑎, 𝑐, 𝑑} and 𝐵𝑁𝑅(𝑋) = {𝑎, 𝑐}.  

Since 𝑅∗(𝑋), 𝑅∗(𝑋) are not equal therefore 𝑋 is a r- set in (𝑈, 𝑅).  

2.6. Example: Let 𝑈 = (0, ∞) and 𝑅  is an equivalence relation 𝑈 defined as below:  

                                   U R⁄ = {(0,1], (1,2], (2,3], … , (𝑘, 𝑘 + 1], … }  

where (𝑘, 𝑘 + 1], 𝑘 = 0,1,2, … stand for semi-open intervals. Then its approx. space is 

(𝑈, 𝑅). Consider approximations of open interval 𝑋 = (0, r), when 𝑛 < r <  𝑛 +1 for an 

integer 𝑛 ≥ 0. Then: 

 𝑅∗(𝑋)  = ⋃𝑖 =0
𝑛−1(𝑖, 𝑖 + 1] = (0, 𝑛]  

 𝑅∗(𝑋)  =  ⋃𝑖=0
𝑛  (𝑖, 𝑖 + 1] = (0, 𝑛 + 1]  

This means that, 𝑋 is a r-set in its approx. space (𝑈, 𝑅 ).  

From now on, we will use notation 𝑅(𝑋) = (𝑅∗(𝑋), 𝑅∗(𝑋)) to refer a r- set.  
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2.7. Definition: Suppose 𝑅(𝑋) = (𝑅∗(𝑋), 𝑅∗(𝑋)) be a r-set in an approx. space (𝑈, 𝑅), and 

τ∗, τ∗ are topologies consist of just exact sets in 𝑅∗(𝑋) and R∗(𝑋) respectively. Then, the set 

τ = (τ∗, τ∗) is said to be a rough (r-) topology on 𝑅(𝑋) and (𝑅(𝑋), τ) is rough(r-) topological 

space. In a r-topology τ = (τ∗, τ∗), τ∗ is known as lower(l.) r-topology, while τ∗ is upper(u.) 

r-topology.  

2.8. Definitio: assume that, 𝐺 = (𝐺∗, 𝐺∗) is a r-set in a r-topological space (𝑅(𝑋), τ). Then 

the set 𝐺∗ is said to be lower rough (l. r-) open when 𝐺∗ ⊆ τ∗. Also,  𝐺∗ is said to be upper 

rough (u. r-) open if 𝐺∗ ⊆  τ∗. The r-subset 𝐺 is said to be rough(r-) open if 𝐺 is l. r-open and 

u. r-open.  

2.9. Example: Suppose 𝑅(𝑋) = (𝑅∗(𝑋), 𝑅∗(𝑋)) is a r-set and τ∗ = {𝐴 ⊆ 𝑅∗(𝑋) |𝐴 is exact} 

and τ∗ = {𝐵 ⊆ 𝑅∗(𝑋)| 𝐵 is exact}. Therefore, each of τ∗ and τ∗ represent topologies on 

𝑅∗(𝑋) and 𝑅∗(𝑋) respectively. Then, the r- topology τ = (τ∗, τ∗) on 𝑅(𝑋) is said to be 

discrete r- topology on 𝑅(𝑋).  

2.10. Example: Consider 𝑅(𝑋) = (𝑅∗(𝑋), 𝑅∗(𝑋)) as a r-set and suppose τ∗ = {ϕ, 𝑅∗(𝑋)} 

while τ∗ = {𝜙, 𝑅∗(𝑋)}. It straightforward τ∗ and τ∗ represent topologies on 𝑅∗(𝑋) and 

𝑅∗(𝑋). The r- topology τ = (τ∗, τ∗) is named indiscrete r-topology on 𝑅(𝑋). 

2.11. Definition: Let (𝑹(𝑿), 𝛕)  be a r- topological space ,then  𝑵∗ ⊆ 𝑹∗(𝑿), named a 𝝉∗- 

neighbourhood of 𝒙 ∈ 𝑹(𝑿) if we have a l. r- open set 𝑨𝟏 in 𝑹∗(𝑿) satisfies, 𝒙 ∈ 𝑨𝟏 ⊆

𝑵∗. Similarly, the set 𝑵∗ ⊆ 𝑹∗(𝑿), named a 𝛕∗- neighbourhood of 𝒙 if we have an u. r- 

open set 𝑨𝟐 in 𝑹∗(𝑿) satisfies, 𝒙 ∈ 𝑨𝟐 ⊆ 𝑵∗. When 𝑵∗ ⊆ 𝑹∗(𝑿) ⊆ 𝑵∗ ⊆ 𝑹∗(𝑿) then, 𝑵 =

(𝑵∗, 𝑵∗) named r- neighbourhood of 𝒙. 

2.12. Definition : Let (𝑅(𝑋), τ), be a r-topological space, where 𝑅(𝑋) = (𝑅∗(𝑋), 𝑅∗(𝑋)) and 

τ = (τ∗, τ∗). If τ∗ is Hausdorff, then it is named lower (l.) Hausdorff topology and if τ∗ is a 

Hausdorff, then it is named upper (u.) Hausdorff topology. If each of τ∗ and τ∗ is 

Hausdorff, then (𝑅(𝑋), τ) is named a r-Hausdorff topological space.  

2.13. Definition: A subset 𝐴 = (𝐴∗, 𝐴∗) of a r-topological space (𝑅(𝑋), τ) is named l. r- 

closed if 𝐴∗
𝐶 = 𝑅∗(𝑋) −  𝐴∗ is l. r-open. Also 𝐴 is said to be u. r- closed if 𝐴∗𝐶 = R∗(𝑋) −

𝐴∗ is u. r-open. The set 𝐴 = (𝐴∗, 𝐴∗) is called r-closed if  𝐴  is l. r-closed and u. r-closed.  

2.14. Definition: Suppose (𝑅(𝑋), 𝜏) and (𝑅(𝑌), 𝛾) are r-topological spaces with topologies 

𝜏 = (𝜏∗, 𝜏∗) and 𝛾 = (𝛾∗, 𝛾∗), respectively. If  𝑓∗: (𝑅∗(𝑋), 𝜏∗) ⟶ (𝑅∗(𝑌), 𝛾∗) is cont. map at 𝑥 ∈

𝑋 then it is called lower continuous( l. cont.) at 𝑥. If  𝑓∗: (𝑅∗(𝑋), 𝜏∗) ⟶ (𝑅∗(𝑌), 𝛾∗) is cont. 

map at 𝑥 ∈ 𝑋 then it is called upper continuous(u. cont.) at 𝑥. Then, 𝑓 =

(𝑓∗, 𝑓∗): (𝑅(𝑋), 𝜏) ⟶ (𝑅(𝑌), 𝛾) called rough continuous (r- cont.) map at 𝒙 when 𝑓∗ and 𝑓∗ 

are l. cont. and u. cont. at 𝑥 respectively. 

We say 𝑓 ∶  (𝑅(𝑋), 𝜏) ⟶ (𝑅(𝑌), 𝛾) is rough continuous (r- cont.) when  𝑓 is r- cont. at each 

𝑥  in  𝑋.  

2.15. Definition: Let 𝑅(𝑋) = (𝑅∗(𝑋), 𝑅∗(𝑋)) be a r-set. If 𝑅∗(𝑋) is a compact set then 𝑅∗(𝑋) 

called a lower compact (l. comp.) set. Similarly, if 𝑅∗(𝑋) is a compact set then 𝑅∗(𝑋) is 

called upper compact (u. comp.) set. Then 𝑅(𝑋) = (𝑅∗(𝑋), 𝑅∗(𝑋)) is named a rough 

compact (r- comp.) and if  𝑅∗(𝑋) and 𝑅∗(𝑋) are l. comp. and u. comp. respectively.  

3. Results and Discussion 

This section motivates for introducing a new concept in rough theory called rough k- space. 

In addition, new related properties will be studied. Initially, rough k- space will be defined 

as follows: 

3.1.  Definition: Assume (𝑅(𝑋), 𝜏) be a r- Hausdorff space. Then (𝑅∗(𝑋), τ∗) is 

named lower(l.) 𝒌-space if for any set 𝑊∗ in 𝑅∗(𝑋) satisfying 𝑊∗⋂𝐾∗ is l. closed in 𝐾∗ ( 

equivalently, in 𝑅∗(𝑋)) for every l. comp. set 𝐾∗ of 𝑅∗(𝑋) then 𝑊∗ is l. closed. Also, 

(𝑅∗(𝑋), 𝜏∗) named upper(u.) 𝒌- space if for each set 𝑊∗ in 𝑅∗(𝑋) satisfying 𝑊∗⋂𝐾∗ is u. 

closed in 𝐾∗ ( equivalently, in 𝑅∗(𝑋)) for every u. comp. set 𝐾∗ of 𝑅∗(𝑋) then 𝑊∗ is u. 

closed. The space (𝑅(𝑋), 𝜏) is called rough(r-) k-space if 𝑅∗(𝑋) is a l. k-space and  𝑅∗(𝑋) is 

an u. k-space [9].  
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3.2. Theorem: If (𝑹(𝑿), 𝝉) is r-𝒌-space and (𝑹(Y), 𝜸) is any r-topological space, 

then 𝒇: (𝑹(𝑿), 𝝉) ⟶ (𝑹(Y), 𝜸) is r- cont. function if and only if for any r-comp. set 𝑪 =

(𝑪∗, 𝑪∗) of 𝑹(𝑿), the restriction 𝒇 |𝑪 is r-cont. function [10], [11], [12].  

 Proof: suppose 𝑓 is a r-cont. function defined on the r- k-space (𝑅(𝑋), 𝜏) into r- space 

(𝑅(𝑌), 𝛾). Then, 𝑓∗: (𝑅∗(𝑋), 𝜏∗) ⟶ (𝑅∗(𝑌), 𝛾∗) is l. cont. and 𝑓∗: (𝑅∗(𝑋), 𝜏∗) ⟶ (𝑅∗(𝑌), 𝛾∗) is 

u. cont.. Since (𝑅∗(𝑋), 𝜏∗) and (𝑅∗(𝑋), 𝜏∗) are l. 𝑘-space and u. 𝑘-space respectively and 

depending on proposition (2.2), for any r-comp. set 𝐶 = (𝐶∗, 𝐶∗) of 𝑅(𝑋), the restrictions 

𝑓∗|𝐶∗ is l. cont. and 𝑓∗|𝐶∗ is u. cont.. Therefore, 𝑓|𝐶 = ( 𝑓∗|𝐶∗, 𝑓∗|𝐶∗ ) is r-cont..  

 Conversely, let 𝑓 |𝐶 r-cont. function for every r-comp. subset 𝐶 = (𝐶∗, 𝐶∗) of (𝑅(𝑋), 𝜏). This 

means, the restrictions 𝑓∗|𝐶∗ and 𝑓∗|𝐶∗ are l. cont. and u. cont. functions respectively where 

𝐶∗ and 𝐶∗ are l. comp. and u. comp. sets in (𝑅∗(𝑋), 𝜏∗) and (𝑅∗(𝑋), 𝜏∗) respectively. Now 

proposition (2.2) shows that 𝑓∗: (𝑅∗(𝑋), 𝜏∗) ⟶ (𝑅∗(Y), 𝛾∗) is l. cont. and 𝑓∗: (𝑅∗(𝑋), 𝜏∗) ⟶

(𝑅∗(Y), 𝛾∗) is u. cont. [13].  

3.3.  Lemma: If 𝐾 = (𝐾∗, 𝐾∗) is r-comp. set and 𝐵 = (𝐵∗, 𝐵∗) r- closed in (𝑅(𝑋), 𝜏), 

then 𝐵 ∩ 𝐾 is r-comp.. 

Proof: If 𝐾 is r-comp., then 𝐾∗ and 𝐾∗ are comp. in 𝑅∗(𝑋) and 𝑅∗(𝑋) respectively. If {𝑉∗𝑖: 𝑖 ∈

𝐼} be an open cover for 𝐵∗ ∩ 𝐾∗, then {𝑉∗𝑖: 𝑖 ∈ 𝐼} ∪ 𝐵∗
𝑐  is open cover of 𝐾∗. But 𝐾∗ is comp. 

set, we can find subcover {𝑉∗1, … , 𝑉∗𝑛} ∪  𝐵∗
𝑐  ⊃  𝐾∗. So, it is clear that {𝑉∗1, … , 𝑉∗𝑛} covers 

𝐵∗ ∩ 𝐾∗, so it is comp. in 𝑅∗(𝑋). Similarly, 𝐵∗ ∩ 𝐾∗ can be proved as a comp. subset of 𝑅∗(𝑋). 

Then 𝐵 ∩ 𝐾 is r-comp. in 𝑅(𝑋).  

3.4. Proposition: A r-closed subspace of a r-k-space is a r-k-space.  

Proof: Let  (𝑅(𝑋), 𝜏)  be a r- k- space, where 𝑅(𝑋) = (𝑅∗(𝑋), 𝑅∗(𝑋)), 𝜏 = ( 𝜏∗, 𝜏∗ ) and let 

𝐵 = (𝐵∗, 𝐵∗) be a r- closed set in 𝑅(𝑋). Let 𝐴 = (𝐴∗, 𝐴∗) be subset of 𝐵. Assume for any 

comp. subset 𝐾 = (𝐾∗, 𝐾∗) of 𝐵 such that each of 𝐴∗ ∩ 𝐾∗ and 𝐴∗ ∩ 𝐾∗ are closed subsets of 

𝐾∗ and 𝐾∗ respectively. Now let 𝐾∗ = 𝐶∗ ∩ 𝐵∗ for a l. comp. set 𝐶∗ ⊆ 𝑅∗(𝑋), then 𝐾∗ is also l. 

comp. in 𝑅∗(𝑋) [ Lemma 3.3]. According to the assumption, we have 𝐶∗ ∩ 𝐴∗ = 𝐵∗ ∩ 𝐴∗ is 

closed subset of  𝐵∗ and then closed in 𝑅∗(𝑋) ( 𝐵∗ is closed in 𝑅∗(𝑋) ) Since 𝑅∗(𝑋) is l. k-

space, 𝐴∗ is l. closed in 𝑅∗(𝑋), and then l. closed in 𝐵∗ ( 𝐵∗ is closed in 𝑅∗(𝑋) ). Similarly, we 

can prove 𝐴∗ is u. closed in 𝑅∗(𝑋). This means 𝐵 = (𝐵∗, 𝐵∗) is r-k-space [14].  

3.5. Proposition: If (𝑅(𝑋), 𝜏) is a r- 𝑘- space and (𝑅(𝑌), 𝛾) is a r- comp. and r- 

Hausdorff space, then (𝑅(𝑋)  × 𝑅(Y), 𝜏 ×  𝛾 ) is a r-𝑘-space.  

Proof: Let (𝑅(𝑋), 𝜏) r- 𝑘- space, then (𝑅∗(𝑋), 𝜏∗) and (𝑅∗(𝑋), 𝜏∗) be l. 𝑘- space and u. 𝑘- 

space respectively. Since (𝑅(Y), 𝛾) r-comp. and r- Hausdorff, then (𝑅∗(Y), 𝛾∗) is a l. comp. 

and l. Hausdorff space and (𝑅∗(Y), 𝛾∗) is an u. comp. and u. Hausdorff space. So, 

proposition (2.3) asserts that, 𝑅∗(𝑋) × 𝑅∗(Y ) will be a l. 𝑘- space and 𝑅∗(𝑋) × 𝑅∗(Y) will be 

an u. 𝑘- space, thus 𝑅(𝑋) × 𝑅(𝑌) is r- 𝑘- space [15].  

3.6. Definition: Let (𝑅(𝑋), τ) and (𝑅(Y), γ) are two r-spaces with topologies τ =

(τ∗, τ∗) , γ = (γ∗, γ∗). Assume that,  𝑓 = (𝑓∗, 𝑓∗): (𝑅(𝑋), τ) ⟶ (𝑅(Y), γ) is a function where 

𝑓∗: (𝑅∗(𝑋), τ∗) ⟶ (𝑅∗(Y), γ∗) and 𝑓∗: (𝑅∗(𝑋), τ∗) ⟶ (𝑅∗(Y), γ∗). Then, 𝑓 = (𝑓∗, 𝑓∗) is named 

rough(r-) homeomorphism when: 

(1) 𝑓∗ and 𝑓∗ are bijective. 

(2) 𝑓∗ and 𝑓∗ are l. cont. and u. cont. respectively. 

(3) 𝑓∗ and 𝑓∗ are l. closed and u. closed respectively. 

Also, 𝑓∗ and 𝑓∗ are said to be lower(l.) homeomorphism and upper(u.) homeomorphism 

respectively. 

3.7. Theorem: Let  (𝑅(𝑋), τ) and (𝑅(Y), γ) are r-Hausdorff topological spaces with 

topologies τ = (τ∗, τ∗) and γ = (γ∗, γ∗) and let  𝑓 = (𝑓∗, 𝑓∗): (𝑅(𝑋), τ) ⟶ (𝑅(Y), γ) is a r-

homeomorphism. Then, 𝑅(𝑋) is r- 𝑘- space if and only if, 𝑅(𝑌) is a r- 𝑘- space.  

Proof: Firstly, consider (𝑅(𝑋), 𝜏) is a r- 𝑘- space. Let  𝑊= ( 𝑊∗, 𝑊∗) be a r-set in 𝑅(Y) and 

𝐾 = (𝐾∗, 𝐾∗) be a r-comp. set in 𝑅(Y) for which  𝑊⋂𝐾= (𝑊∗ ⋂ 𝐾∗, 𝑊∗ ⋂ 𝐾∗ ) is r-closed 

subset of 𝐾. Since 𝑓: (𝑅(𝑋), 𝜏) ⟶ (𝑅(Y), 𝛾) is a r-homeomorphism, so the maps 

𝑓∗: (𝑅∗(𝑋), τ∗) ⟶ (R∗(Y), γ∗) and 𝑓∗: (𝑅∗(𝑋), τ∗) ⟶ (𝑅∗(Y), γ∗) are l. homeomorphism and 

u. homeomorphism respectively. Hence, 𝑓∗
−1(𝑊∗) is a set in 𝑅∗(𝑋), 𝑓∗

−1(𝑊∗ ⋂ 𝐾∗ ) =
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 𝑓∗
−1(𝑊∗ ) ⋂  𝑓∗

−1(𝐾∗) is l. closed and 𝑓∗
−1 ( 𝐾∗ ) is l. comp. set  of 𝑅∗(𝑋) then 𝑓∗

−1(𝑊∗ ) is l. 

closed ( (𝑅∗(𝑋), τ∗) is l. r-k-space ) and hence, 𝑓∗ (𝑓∗
−1(𝑊∗)) = 𝑊∗ is l. closed in R∗(Y) ( 𝑓∗ is 

l. homeomorphism ). In same way we can prove, 𝑓∗ (𝑓∗−1(𝑊∗)) = 𝑊∗ is u. closed in 

𝑅∗(𝑌). Hence, 𝑊 is a r-closed subset of 𝑅(Y) that asserts (𝑅(Y), 𝛾) is a r-𝑘- space. 

Secondly, the other part can be proved by same routine. 

4. Conclusion 

In this paper, a new concept, the rough k-space, was introduced in rough set theory. 

The paper explored several important properties of rough k-spaces, including the concept 

of rough continuity and rough homeomorphisms. It was shown that the rough continuous 

functions on a rough k-space are continuous on its compact subsets, and the Cartesian 

product of a rough k-space with a rough compact T2-space also forms a rough k-space. 

Moreover, the paper discussed how rough k-spaces retain hereditary and topological 

properties. These findings contribute to the expanding understanding of rough 

topological spaces and provide a solid foundation for further research in this area. 
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