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Annotation.  

We know that there will be some difficulty in calculating 

some surfaces.  the reason for this is that the calculation of 

surfaces becomes a problem as a result of the uneven 

aggregation of the surfaces by some other surface below or 

above.  in this article you will learn some similar, mathematical 

equations of surfaces that can occur in nature.  this article 

briefly provides information on several surfaces.  we will 

provide more interesting and complete information in the next 

issues of the magazine. 
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---------------------------------------------------------------------***-------------------------------------------------------------------

   Do not worry about your difficulties in 

mathematics; 

I can assure you that mine are still greater. 

(Albert Einstein) An implicit surface is a set of points 

p such that f(p) = 0, where f is a trivariate function 

(i.e., p  ∈ 𝑹𝟑 ). The surface is also known as the zero 

set of f and may be written f-1(0) or Z(f). According 

to the implicit surface theorem, if zero is a regular 

value of f, then the zero set is a two-dimensional 

manifold. An iso-surface is a 

similar set of points for which f(p) = c, where c is the 

iso-contour value of the surface. The function f is 

sometimes called the implicit function, although we 

prefer implicit surface function. 
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In many cases, f partitions space into an inside and 

an outside. By convention, f is usually written such 

that f(p) < 0 describes a volume of points enclosed 

by the surface, f(p) = 0. This ability to enclose 

volumes and the ability to represent blends of 

volumes endow implicit surfaces with inherent 

advantages in geometric surface design. This is 

particularly so for skeletal design, as the relation 

between skeleton and surface is, generally, 

volumetric. Inherent in this relation is the use of 

a distance metric between the point p and the 

skeleton. We examine these metrics according to 

their blend properties and ease of implementation. 

 We suggested it is easier for the designer of natural 

forms to work with skeletal geometry than with the 

usually more complex geometry of the 

corresponding surface. The volumetric relation 

described by f(p) < 0 underlies the correspondence 

between skeleton and surface. Thus, the combination 

of skeletal and implicit techniques is particularly 

appropriate for many natural forms. The smoothness 

sometimes associated with natural forms may be 

obtained as a blend of component volumes, which 

we call implicit primitives. The skillful combination 

of primitives is an important task for designers who 

wish to define implicitly an interesting or useful 

shape. Primitives may also be combined by set 

operations and functional composition (such as 

deformations), but blends are the most important 

combination concerning the design of smooth 

surfaces. 

Traditionally, computer graphics has favored the 

parametric surface over the implicit because the 

parametric is easier to render and is more convenient 

for 

certain geometric operations, such as the 

computation of curvature or the control of position 

and tangency. Specifically, ‘‘parametric surfaces are 

generally easier 
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[than implicit surfaces] to draw, tessellate, 

subdivide, and bound, or to perform any operation 

on that requires a knowledge of ‘where’ on the 

surface’’ [Rockwood 1989]. Parametric and implicit 

surface representations are also distinguished by the 

compactness of their mathematical expression [Ricci 

1973]. This seems particularly true for definitions 

that involve distance. For example, given a sphere 

centered at c, with radius r, the parametric definition 

is: 

(1,1) (𝑝𝑥, 𝑝𝑦, 𝑝𝑧) = ( c𝒙 + rcosθcosτ, 𝑐𝑦 +

𝑟𝑠𝑖𝑛𝜃, 𝑐𝑧 + 𝑟𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜏), 

𝜃 ∈ (0, 𝜋), 𝜏 ∈ (0,2𝜋). 

The implicit definition is considerably more 

compact: 

(1.2)(𝑝𝑥 − 𝑐𝑥)2 + (𝑝𝑦 − 𝑐𝑦)2 + (𝑝𝑧 − 𝑐𝑧)2 − 𝑟2 =

0     

 Implicit surface definitions are very general; they 

can represent discrete pointsets, algebraic surfaces, 

and procedurally defined implicit surfaces. A 

discrete pointset can be represented by a function 

that returns 0 for p a member of the set, 1 

otherwise. Generally, this is not useful because the 

function is discontinuous; pointsets can, however, be 

adapted for use in surface fitting [Hoppe et al. 1992]. 

Algebraic surfaces are commonly found in computer 

graphics, and include quadrics [Foley et al. 1990] 

and superquadrics [Barr 1981]. There has been a 

recent renewal of interest in general algebraic 

surfaces [Sederberg 1985], [Sederberg 1987], [Bajaj 

1992]. They may be ray-traced [Blinn 1982], or, in 

the case of quadric surfaces, they are suitable for 

incremental scan-line techniques [Mathematical 

Applications Group 1968]. 

Although simple distance constraints can be 

expressed analytically, the defining function need 

not be analytic, but, as observed in [Ricci 1973], may 

be procedural. That is, a designer is free to specify 

any arbitrary process that, given a point in space, 

computes a real value. The procedure may employ 

conventional mathematical functions, conditionals, 

tables, and so on. A procedurally evaluated implicit 

surface function is not the same as a ‘procedure 

model’ [Newell 1975]. Both involve procedures, but 

the former is utilized to evaluate a point in space and 

the latter is utilized to construct a parametric surface. 

An example procedural implicit surface, discussed in 

section 5.6.14.1, performs several geometric 

operations to yield a value for f that would be 

difficult to express analytically. 

In the following sections we consider several aspects 

of an implicit surface, including its relation to solid 

modeling, its application to skeletons, its 

visualization and polygonization, and its refinement 

by added surface detail. In 1973, a ‘constructive 

geometry’ was introduced for the purpose of 

defining complex shapes derived from operations 

(such as union, intersection, and blend) upon 

primitives [Ricci 1973]. The surface was defined as 

the boundary between the half-spaces f(p) < 1 and 

f(p) > 1; the former was considered the ‘inside,’ or 

solid portion, of an object. From this initial approach 

to solid modeling evolved constructive solid 

geometry, or CSG. With CSG, an object is evaluated 

‘bottom-up’ according to a binary tree. The leaf 

nodes are usually restricted to low degreepolynomial 

primitives, such as spheres, cylinders, ellipsoids, and 

tori. The internal nodes represent Boolean set 
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operations. The difference between solid modeling 

and implicit modeling is somewhat subtle. The 

surface of a solid model must enclose a finite 

volume. Consequently, the surface is everywhere 

equivalent to a two-dimensional disk and is, 

therefore, a two-dimensional manifold [Mäntylä 

1988]. Implicit surfaces can enclose finite volumes 

as well; for example, f(x, y, z) = 𝑥2 + 𝑦2 + 𝑧2 − 1     

represents the unit sphere.But implicit surfaces can 

also represent unbounded surfaces; for example, f(x, 

y, z)= z represents the xy-plane. Solid modeling is not 

limited to constructive models but may include, 

among others, decomposition models and boundary 

models [ibid.]. CSG is, however, the dominant form 

of solid modeling. The literature of constructive 

solid geometry emphasizes the robust representation 

of all intermediate results within the treestructured  

evaluation. Usually this intermediate representation 

is the boundary representation, or BRep. It is a 

versatile representation from which several 

geometric properties, such as volume and center of 

gravity, are readily computed.1 It is generally 

accepted in solid modeling that boundary 

representations must be closed under all Boolean 

operations. The requirement to maintain 

intermediate boundary representations places an 

extraordinary demand on the process of CSG 

evaluation. These concerns are expressed in [ibid.]: 

Unfortunately, Boolean set operations algorithms for 

boundary representations are in general plagued by 

two kinds of problems: First, to be effective, a set 

operations algorithm must be able to treat all 

possible kinds of 

geometric intersections . . . [which] easily leads to a 

very [complex] case analysis. Second, the very case 

analysis must be based on various tests for 

overlap, coplanarity, and intersection which are 

difficult to implementrobustly in the presence of 

numerical errors. This explains the preoccupation in 

CSG literature with the robustness of edgeedge 

and edge-surface intersections. In comparison, 

concrete representations for implicit surfaces are 

formed without intermediate evaluations, greatly 

reducing the affects of numerical instability. 

Additionally, implicit surfaces need not be defined 

according to a binary tree or any other graph. Early 

development of geometric modeling, which 

embraces both surface and solid modeling, was 

motivated by engineering applications in the 

automotive, aerospace, aviation, and shipping 

industries and by training applications such as real-

time, interactive flight simulators. This development 

involved an interplay of visualization and geometric 

modeling techniques that inextricably linked 

computer graphics and geometric modeling. For 

example, as graphics systems became faster and 

more flexible, designers were encouraged to develop 

ever more sophisticated models, many of which 

required new techniques in geometric modeling. 

Indeed, much of the development in surface and 

solid modeling is reported in the literature of 

computer graphics. 

 Skeletal Design 

Having discussed the value of skeletally defined 

implicit surfaces, we now consider 
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specific methods for their evaluation and definition. 

As described in section 2.4, the skeleton is a 

collection of elements, each of which generates a 

volume. Within an implicit context, we call such a 

volume a skeletal primitive, which we denote by 

Pi(p), for skeletal element i. Thus, P is a function 

from 𝑅3  (or 𝑅2 for illustrative purposes) to R, and, 

usually, is 𝐶1 continuous. The implicit surface 

function may be a blend of these primitives, i.e., f(p) 

= g(p,𝑃1 + 𝑃2 + ⋯ + 𝑃𝑛) = 0, and the implicit  

surface is the covering, or manifold, of the skeleton. 

Ideally, we wish our implementation of implicit 

surface algorithms to be indifferent to skeletal 

complexity. This leads to two principal methods to 

evaluate the implicit surface: 

(3) fskeleton = frroot-c, where frlimb = max (flimb, 

Sfrchildren) , or 

(4) fskeleton = Sflimb-c 

In both (3) and (4), flimb refers to the implicit 

primitive defining the volume surrounding the 

particular skeletal element. In (3), fr is a recursive 

function equal to the implicit primitive of a limb or 

the sum of fr applied to each of the child limbs, 

whichever is greater. Contrary to solid modeling 

convention, we 

assume flimb increases with decreasing distance to 

the limb; thus, max, rather than min, is appropriate. 

fskeleton(p) is the recursive function applied to the 

root limb of the skeleton; in (4), fskeleton(p) is 

simply the summation of all primitives. The 

recursive function yields a more smooth transition in 

limb radii at branch points. The computational load 

for (3) and (4) can be reduced by providing an 

axisaligned bounding box around each skeletal 

element. For p outside the bounding box of limbi, the 

influence of limbi is presumed non-existent; that is, 

flimbi(p) = 0. It is simple to test for p within an axis-

aligned box. The interpolation of two implicit 

surfaces can be accomplished in several ways. The 

most accessible method is to interpolate the 

individual functions that define the surfaces. For 

example, in the figure below, we interpolate a torus, 

(𝑥2 + 𝑦2 + 𝑧2 + 𝑟𝑚𝑎𝑗𝑜𝑟
2 − 𝑟𝑚𝑖𝑛𝑜𝑟

2)2- 4𝑟𝑚𝑎𝑗𝑜𝑟
2 

(𝑥2 + 𝑦2), and a sphere, 𝑥2 + 𝑦2 + 𝑧2 + 𝑟𝑚𝑎𝑗𝑜𝑟
2. 
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Figure 1. Interpolation of Sphere and Torus 

Functions 

Interpolation of two functions, however, is not 

appropriate for skeletal forms 

because rigid body transformations can be lost. For 

example, in the following illustration, generated with 

a two-dimensional implicit contour follower, we 

employ three different interpolations.  

     Figure 2. Implicit Interpolations 

top: interpolation of implicit contour functions3 

middle: interpolation of segment endpoints bottom: 

interpolation of segment angle 

Visualization 

Because an implicit formulation does not produce 

surface points by substitution, root-finding must be 

employed to visualize an implicit surface.4 This can 

be performed by ray-tracing, polygon scan 

conversion, or contour tracing. We briefly consider 

each of these methods. Implicit surfaces may be 

rendered directly by ray tracing, assuming a ray-

surface intersection procedure is provided for a given 

surface. Often the intersection calculation can be 

accelerated by culling those pieces of the surface 

bounded by axis-aligned boxes not intersected by the 

ray. This process is known as spatial 

subdivision [Glassner 1984], [Samet 1990] of the 

implicit volume, and was applied to a procedural 

implicit surface [Bloomenthal 1989] to produce the 

image below. Other methods to accelerate the ray-

tracing of implicit surfaces include symbolic algebra 

for surfaces defined by polynomials [Hanrahan 

1983], the Lipschitz condition for surfaces with 

bounded gradient derivatives [Kalra and Barr 1989], 

and sphere-tracing for surfaces with bounded 

derivatives [Hart 1993]. In addition to shaded 

images, it is possible to create contour-line (or 

section-line) drawings of implicit surfaces by 

intersecting the surface with a series of planes, each 

perpendicular to the line of sight and receding from 

the viewpoint [Ricci 1973]. For each plane, the zero-

set contour is drawn, excepting those parts 

obscured by previously drawn contours. In 

[Bloomenthal 1989] the implicit 
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surface was spatially partitioned by an octree 

[Meagher 1982] to produce the following image. It 

is simple to compute the intersection of octree and 

plane; each intersected terminal node of the octree 

produces a section of the contour. Contour line 

drawings are particularly useful for engineering 

applications [Forrest 1979]. Nonetheless, many 

geometric shapes are best abstracted into Boolean set 

theoretic operations. 
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