Main Article Content

Abstract

In this paper the stability by using the direct method for some Lyapunov functions was applied to the system of fractional-differential-integral Riemann- Liouville type and the results explain the role of the Lyapunov in achieving stability. Some examples have been given to support the results.

Keywords

fractional differential integral Riemann Liouville stabilization Lyapunov functions

Article Details

How to Cite
Mohammed Ghazi, Dr. Faruk POLAT, & Dr. Sameer Qasim HASAN. (2024). LYAPUNOV FUNCTION FOR THE STABILITY OF FRACTIONAL DIFFERENTIAL-INTEGRAL RIEMANN-LIOUVILLE. CENTRAL ASIAN JOURNAL OF MATHEMATICAL THEORY AND COMPUTER SCIENCES, 5(1), 6-23. Retrieved from https://cajmtcs.centralasianstudies.org/index.php/CAJMTCS/article/view/594

References

  1. 1. M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fract. Diff. Appl. 1 (2015) 73–85.
  2. 2. Y. Li, Yan, Y. Chen, I. Podlubny, Mittag-Leffler stability of fractional order nonlinear dynamic systems, Automatica 45 (2009) 1965–1969.
  3. 3. Diethelm, K.: ’The analysis of fractional differential equations. An application-oriented exposition using differential operators of Caputo type’ (Lecture Notes in Mathematics 2004, Springer-Verlag, Berlin, 2010).
  4. 4. Vainikko, G.: ’Which functions are fractionally differentiable?’, Journal of Analysis and its Applications, 2016, 35, pp. 465–487.
  5. 5. Rockafellar, R.T.: ’Convex Analysis’ (Princeton University Press, Princeton, New Jersey, 1972).
  6. 6. Li, Y., Chen, Y., Podlubny, I.: ’Mittag-Leffler stability of fractional order nonlinear dynamic systems’, Automatica, 2009, 45, pp. 1965–1969.
  7. 7. Aguila-Camacho, N., Duarte-Mermoud, M.A., Gallegos, J.A.: ’Lyapunov functions for fractional order systems’, Commun Nonlinear Sci Numer Simulat., 2014, 19, (9), pp. 2951–2957.
  8. 8. Chen, W., Dai, H., Song, Y., Zhang, Z.: ’Convex Lyapunov functions for stability analysis of fractional order systems’, IET Control Theory Appl., 2017, 11, (5), pp. 1070–1074.
  9. 9. Baleanu, D., Mustafa, O.: ’On the global existence of solutions to a class of fractional differential equations’, Computers and Mathematics with Applications, 2010, 59, pp. 1835–1841.
  10. 10. Heinonen, J.: ’Lectures on Lipschitz Analysis’ (Technical Report, University of Jyväskylä, 2005).
  11. 11. Chen, W., Dai, H., Song, Y., Zhang, Z.: ’Convex Lyapunov functions for stability analysis of fractional order systems’, IET Control Theory Appl., 2017, 11, (5), pp. 1070–1074.
  12. 12. Feng, Y., Li, L., Liu, J., Xu, X.: ’Continuous and discrete one dimensional autonomous fractional odes’, Discrete and Continuous Dynamical Systems-Series B, doi:10.3934/dcdsb.2017210.
  13. 13. Aghababa, M.P.: ’Stabilization of a class of fractional-order chaotic systems using a non-smooth control methodology’, Nonlinear Dyn., 2017, 89, (2), pp. 1357–1370.
  14. 14. Zhou, X.F., Hu, L.G., Jiang, W.: ’Stability criterion for a class of nonlinear fractional differential systems’, Applied Mathematics Letters, 2014, 28, pp. 25–29.