Materials Technologies, Modern Smart Green Cities and the Use of Smart Materials
Abstract
This study explores the integration of smart materials in the development of sustainable urban infrastructure, with a focus on enhancing the energy efficiency and durability of green cities. The primary objective is to assess the effectiveness of various smart materials, including phase-change materials, shape-memory alloys, and smart concrete, in reducing environmental impacts and supporting sustainable city frameworks. Methodologies include experimental applications of smart materials, such as integrating surface acoustic wave (SAW) sensors for real-time monitoring of structural health in concrete. Results demonstrate that these materials significantly improve resilience, lower maintenance costs, and contribute to energy savings, reinforcing their potential role in future urban planning. The findings emphasize the importance of smart material innovation in achieving eco-friendly urban systems.
References
[2] Al-Hadithi, A. I., Noaman, A. T., & Mosleh, W. K. (2019). Mechanical properties and impact behavior of PET fiber reinforced self-compacting concrete (SCC). Composite Structures, 224, 111021. https://doi.org/10.1016/j.compstruct.2019.111021.
[3] Amran, M., Onaizi, A. M., Fediuk, R., Vatin, N. I., Rashid, R. S. M., Abdelgader, H., & Ozbakkaloglu, T. (2022). Self-healing concrete as a prospective construction material: A review. Materials, 15(6), 3214.
[4] An, S., Lee, M. W., Yarin, A. L., & Yoon, S. S. (2018). A review on corrosion-protective extrinsic self-healing: Comparison of microcapsule-based systems and those based on core-shell vascular networks. Chemical Engineering Journal, 344, 206–220. https://doi.org/10.1016/j.cej.2018.04.020
[5] Araújo, M., Chatrabhuti, S., Gurdebeke, S., Alderete, N., Van Tittelboom, K., Raquez, J.-M., Cnudde, V., Van Vlierberghe, S., De Belie, N., & Gruyaert, E. (2018). Poly(methyl methacrylate) capsules as an alternative to the ‘’proof-of-concept’’ glass capsules used in self-healing concrete. Cement and Concrete Composites, 89, 260–271. https://doi.org/10.1016/j.cemconcomp.2018.03.015
[6] Available online: https://www.fprimec.com/sensors-for-structural-health-monitoring/ (accessed on 18 July 2023).
[7] Bhamare, D. K., Rathod, M. K., & Banerjee, J. (2019). Passive cooling techniques for building and their applicability in different climatic zones—The state of art. Energy and Buildings, 198, 467–490.
[8] Bhaskar, S., Hossain, K. M. A., Lachemi, M., Wolfaardt, G., & Kroukamp, M. O. (2017). Effect of self-healing on strength and durability of zeolite-immobilized bacterial cementitious mortar composites. Smart materials and Concrete Composites, 82, 23–33. https://doi.org/10.1016/j.cemconcomp.2017.05.013
[9] Bruckner, G., Bardong, J., Binder, A., & Nicolay, P. (2017). SAW delay lines as wireless sensors for industrial applications. In Proceedings of the VIII ECCOMAS Thematic Conference on Smart Structures and Materials, SMART 2017 (pp. 1433–1443). Madrid, Spain.
[10] Cantini, A., Leoni, L., De Carlo, F., Salvio, M., Martini, C., & Martini, F. (2021). Technological energy efficiency improvements in cement industries. Sustainability, 13(7), 3810. https://doi.org/10.3390/su13073810
[11] Cash, J. J., Kubo, T., Bapat, A. P., & Sumerlin, B. S. (2015). Room-temperature self-healing polymers based on dynamic-covalent boronic esters. Macromolecules, 48(7), 2098–2106. https://doi.org/10.1021/ma5025286
[12] Christodoulides, P., Agathokleous, R., Aresti, L., Kalogirou, S. A., Tassou, S. A., & Florides, G. A. (2022). Waste heat recovery technologies revisited with emphasis on new solutions, including heat pipes, and case studies. Energies, 15(2), 384.
[13] Czechowicz, A., & Langbein, S. (2015). Shape memory alloy valves. Springer.
[14] De Belie, N., Gruyaert, E., Al-Tabbaa, A., Antonaci, P., Baera, C., Bajare, D., Darquennes, A., Davies, R., Ferrara, L., Jefferson, T., et al. (2018). A review of self-healing concrete for damage management of structures. Advanced Materials Interfaces, 5(1), 1800074. https://doi.org/10.1002/admi.201800074
[15] de Brito, J., & Kurda, R. (2021). The past and future of sustainable concrete: A critical review and new strategies on cement-based materials. Journal of Cleaner Production, 281, 123558. https://doi.org/10.1016/j.jclepro.2020.123558
[16] Devkota, J., Ohodnicki, P. R., & Greve, D. W. (2017). SAW sensors for chemical vapors and gases. Sensors, 17(4), 801.
[17] Donda, K., Zhu, Y., Fan, S.-W., Cao, L., Li, Y., & Assouar, B. (2019). Extreme low-frequency ultrathin acoustic absorbing metasurface. Applied Physics Letters, 115(17), 173506.
[18] Duerig, T. W., Melton, K. N., Stockel, D., & Wayman, C. M. (2013). Engineering aspects of shape memory alloys (1st ed.). Elsevier Science. https://doi.org/10.1016/B978-0-12-397031-6.00008-2
[19] Erşan, Y., Hernandez-Sanabria, E., Boon, N., & de Belie, N. (2016). Enhanced crack closure performance of microbial mortar through nitrate reduction. Smart materials and Concrete Composites, 70, 159–170. https://doi.org/10.1016/j.cemconcomp.2016.04.011
[20] Everhart, M. C., Nickerson, D. M., & Hreha, R. D. (2006). High-temperature reusable shape memory polymer mandrels. In E. V. White (Ed.), Smart Structures and Materials 2006: Industrial and Commercial Applications of Smart Structures Technologies (Vol. 6171). SPIE.
[21] Fernandez, C. A., Correa, M., Nguyen, M.-T., Rod, K. A., Dai, G. L., Cosimbescu, L., Rousseau, R., & Glezakou, V.-A. (2020). Progress and challenges in self-healing cementitious materials. Journal of Materials Science, 56(2), 201-230.
[22] Ferreira, P. M., Machado, M. A., Carvalho, M. S., & Vidal, C. (2022). Embedded sensors for structural health monitoring: Methodologies and applications review. Sensors, 22(21), 8320.
[23] Frank, W. (1975). Raumklima und thermische Behaglichkeit. In Berichte aus der Bauforschung, Heft 104. Ernst & Sohn Verlag.
[24] Gao, J., Jin, P., Zhang, Y., Dong, H., & Wang, R. (2022). Fast-responsive capsule based on two soluble components for self-healing concrete. Cement and Concrete Composites, 133, 104711. https://doi.org/10.1016/j.cemconcomp.2022.104711
[25] Gilford, J., Hassan, M. M., Rupnow, T., Barbato, M., Okeil, A., & Asadi, S. (2014). Dicyclopentadiene and sodium silicate microencapsulation for self-healing of concrete. Journal of Materials in Civil Engineering, 26, 886–896. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000881.
[26] Goyal, M., Agarwal, S. N., & Bhatnagar, N. (2022). A review on self-healing polymers for applications in spacecraft and construction of roads. Journal of Applied Polymer Science, 139(15), e52816. https://doi.org/10.1002/app.52816
[27] Gracias, J. S., Parnell, G. S., Specking, E., Pohl, E. A., & Buchanan, R. (2023). Smart cities—A structured literature review. Smart Cities, 6(4), 1719-1743.
[28] Guadalupe, J. A., Copaci, D., del Cerro, D. S., Moreno, L., & Blanco, D. (2021). Efficiency analysis of SMA-based actuators: Possibilities of configuration according to the application. Actuators, 10(3), 63.
[29] Guzlena, S., & Sakale, G. (2021). Self-healing of glass fibre reinforced concrete (GRC) and polymer glass fibre reinforced concrete (PGRC) using crystalline admixtures. Construction and Building Materials, 267, 120963. https://doi.org/10.1016/j.conbuildmat.2020.120963
[30] Hartl, D. J., & Lagoudas, D. C. (2007). Aerospace applications of shape memory alloys. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 221(4), 535–552.
[31] Hauer, A., Hiebler, S., & Reuß, M. (2012). Wärmespeicher. Fraunhofer IRB Verlag.
[32] Holechek, J. L., Geli, H. M. E., Sawalhah, M. N., & Valdez, R. (2022). A global assessment: Can renewable energy replace fossil fuels by 2050? Sustainability, 14(4792), 1-16.
[33] Homma, D., Mihashi, H., & Nishiwaki, T. (2009). Self-healing capability of fibre reinforced cementitious composites. Journal of Advanced Concrete Technology, 7, 217–228. https://doi.org/10.3151/jact.7.217
[34] Hossain, R., Sultana, R., Patwary, M. M., Khunga, N., Sharma, P., & Shaker, S. J. (2022). Self-healing concrete for sustainable buildings. A review. Environmental Chemistry Letters, 20(4), 1265-1273.
[35] Huang, H., Yuan, Y., Zhang, W., & Zhu, L. (2021). Property assessment of high-performance concrete containing three types of fibers. International Journal of Concrete Structures and Materials, 15(1), 39.
[36] International Energy Agency. (2019). Global status report for buildings and construction 2019. Retrieved from https://climate.mit.edu/explainers/heating-and-cooling
[37] Jamari, J., Ammarullah, M. I., Santoso, G., Sugiharto, S., Supriyono, T., Prakoso, A. T., Basri, H., & van der Heide, E. (2022). Computational contact pressure prediction of CoCrMo, SS 316L and Ti6Al4V femoral head against UHMWPE acetabular cup under gait cycle. Journal of Functional Biomaterials, 13(3), 64.
[38] Jefferson, A., Joseph, C., Lark, R., Isaacs, B., Dunn, S., & Weager, B. (2010). A new system for crack closure of cementitious materials using shrinkable polymers. Cement and Concrete Research, 40(5), 795–801. https://doi.org/10.1016/j.cemconres.2009.12.001
[39] Jiang, Z., Li, W., & Yuan, Z. (2015). Influence of mineral additives and environmental conditions on the self-healing capabilities of cementitious materials. Cement and Concrete Composites, 57, 116–127. https://doi.org/10.1016/j.cemconcomp.2014.12.003
[40] Jiménez, N., Huang, W., Romero-García, V., Pagneux, V., & Groby, J.-P. (2016). Ultra-thin metamaterial for perfect and quasi-omnidirectional sound absorption. Applied Physics Letters, 109(12), 121902.
[41] Jonkers, H. M., Thijssen, A., Muyzer, G., Copuroglu, O., & Schlangen, E. (2010). Application of bacteria as self-healing agent for the development of sustainable concrete. Ecological Engineering, 36, 230–235. https://doi.org/10.1016/j.ecoleng.2008.12.036
[42] Joseph, C., Jefferson, A., Isaacs, B., Lark, R., Gardner, D., Al-Tabbaa, A., Harbottle, M. J., Yi, S.-T., Heo, G., & Edvardsen, C. (2010). Experimental investigation of adhesive-based self-healing of cementitious materials. Magazine of Concrete Research, 62, 831–843. https://doi.org/10.1680/macr.2010.62.12.831
[43] Joshi, S., Goyal, S., Mukherjee, A., & Reddy, M. S. (2017). Microbial healing of cracks in concrete: A review. Journal of Industrial Microbiology and Biotechnology, 44, 1511–1525. https://doi.org/10.1007/s10295-017-1978
[44] Justo-Reinoso, I., Heath, A., Gebhard, S., & Paine, K. (2021). Aerobic non-ureolytic bacteria-based self-healing cementitious composites: A comprehensive review. Journal of Building Engineering, 42, 102834. https://doi.org/10.1016/j.jobe.2021.102834
[45] Kaluarachchi, Y. (2022). Implementing data-driven smart city applications for future cities. Smart Cities, 5(4), 455-474.
[46] Kayondo, M., Combrinck, R., & Boshoff, W. (2019). State-of-the-art review on plastic cracking of concrete. Construction and Building Materials, 225, 886–899. https://doi.org/10.1016/j.conbuildmat.2019.07.148
[47] Khan, R. (2019). Fiber bridging in composite laminates: A literature review. Composite Structures, 229, 111418. https://doi.org/10.1016/j.compstruct.2019.111418
[48] Khudhair, A. M., & Farid, M. M. (2004). A review on energy conservation in building applications with thermal storage by latent heat using phase change materials. Energy Conversion and Management, 45(2), 263–275.
[49] Komkin, A. I., Mironov, M. A., & Bykov, A. I. (2017). Sound absorption by a Helmholtz resonator. Acoustical Physics, 63(3), 385–392.
[50] Kuang, Y., & Ou, J. (2008). Self-repairing performance of concrete beams strengthened using superelastic SMA wires in combination with adhesives released from hollow fibers. Smart Materials and Structures, 17(2), 025020. https://doi.org/10.1088/0964-1726/17/2/025020
[51] Latawiec, R., Woyciechowski, P., & Kowalski, K. (2018). Sustainable concrete performance—CO2 emission. Environments, 5(3), 27. https://doi.org/10.3390/environments5030027
[52] Lendlein, A., & Kelch, S. (2002). Shape-memory polymers. Angewandte Chemie International Edition, 41(12), 2034–2057.
[53] Lewis, C. L., & Dell, E. M. (2016). A review of shape memory polymers bearing reversible binding groups. Journal of Polymer Science Part B: Polymer Physics, 54(14), 1340–1364.
[54] Li, W., Dong, B., Yang, Z., Xu, J., Chen, Q., Li, H., Xing, F., & Jiang, Z. (2018). Recent advances in intrinsic self-healing smart materialsitious materials. Advanced Materials, 30(e1705679). https://doi.org/10.1002/adma.201705679
[55] Liu, C., Qin, H., & Mather, P. T. (2007). Review of progress in shape-memory polymers. Journal of Materials Chemistry, 17(16), 1543–1558.
[56] Lucas, S., Moxham, C., Tziviloglou, E., & Jonkers, H. (2018). Study of self-healing properties in concrete with bacteria encapsulated in expanded clay. Science and Technology of Materials, 30, 93–98. https://doi.org/10.1016/j.stmat.2018.09.001
[57] Lv, L., Yang, Z., Chen, G., Zhu, G., Han, N., Schlangen, E., & Xing, F. (2016). Synthesis and characterization of a new polymeric microcapsule and feasibility investigation in self-healing cementitious materials. Construction and Building Materials, 105, 487–495. https://doi.org/10.1016/j.conbuildmat.2015.12.176
[58] Maksimkin, A. V., Dayyoub, T., Telyshev, D. V., & Gerasimenko, A. Y. (2022). Electroactive polymer-based composites for artificial muscle-like actuators: A review. Nanomaterials, 12(14), 2272.
[59] Mandal, D., & Banerjee, S. (2022). Surface acoustic wave (SAW) sensors: Physics, materials, and applications. Sensors, 22(3), 820.
[60] Menon, A. V., Madras, G., & Bose, S. (2019). The journey of self-healing and shape memory polyurethanes from bench to translational research. Polymer Chemistry, 10(31), 4370–4388.
[61] Minnebo, P., Thierens, G., De Valck, G., Van Tittelboom, K., De Belie, N., Van Hemelrijck, D., & Tsangouri, E. (2017). A novel design of autonomously healed concrete: Towards a vascular healing network. Materials, 10(1), 49. https://doi.org/10.3390/ma10010049
[62] Morlat, R., Orange, G., Bomal, Y., & Godard, P. (2007). Reinforcement of hydrated portland cement with high molecular mass water-soluble polymers. Journal of Materials Science, 42(13), 4858–4869. https://doi.org/10.1007/s10853-006-0622-1
[63] Mostavi, E., Asadi, S., Hassan, M. M., & Alansari, M. (2015). Evaluation of self-healing mechanisms in concrete with double-walled sodium silicate microcapsules. Journal of Materials in Civil Engineering, 27. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001321
[64] Ni, Z., Du, X. X., Wang, S., Xing, F., & Huang, Z. (2012). Effect of UF/Epoxy microcapsules on smart materials composite. Advanced Materials Research, 443–444, 700–704. https://doi.org/10.4028/www.scientific.net/AMR.443-444.700
[65] Nicolay, P., Chambon, H., & Bruckner, G. (2017). Simulation of the properties and behaviour of a passive and wireless Surface Acoustic Wave RFID Tag, for structural health monitoring applications. In Proceedings of the VIII ECCOMAS Thematic Conference on Smart Structures and Materials, SMART 2017 (pp. 1444–1452). Madrid, Spain.
[66] Nicolay, P., Chambon, H., & Bruckner, G. (2018). SAW RFID sensors and devices for industrial applications, a short review. In Proceedings of the 7th edition of the International Symposium on Air/Craft Materials (ACMA) (pp. 475–481). Compiègne, France.
[67] Orozco, F., Kaveh, M., Santosa, D. S., Lima, G. M. R., Gomes, D. R., Pei, Y., Araya-Hermosilla, R., Moreno-Villoslada, I., Picchioni, F., & Bose, R. K. (2021). Electroactive self-healing shape memory polymer composites based on Diels–Alder chemistry. ACS Applied Polymer Materials, 3(11), 6147–6156.
[68] Plessky, V. P., & Reindl, L. M. (2010). Review on SAW RFID tags. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 57(3), 654–668.
[69] Qian, S., Geng, Y., Wang, Y., Ling, J., Hwang, Y., Radermacher, R., Takeuchi, I., & Cui, J. (2016). A review of elastocaloric cooling: Materials, cycles and system integrations. International Journal of Refrigeration, 64, 1–19.
[70] Reinhardt, H. W., Jonkers, H., Van Tittelboom, K., Snoeck, D., De Belie, N., De Muynck, W., Verstraete, W., Wang, J., & Mechtcherine, V. (2013). RILEM state-of-the-art reports (Vol. 11, pp. 65–117). Springer. https://doi.org/10.1007/978-94-007-6624-2_3
[71] Roig-Flores, M., Formagini, S., & Serna, P. (2021). Self-healing concrete—What is it good for? Materiales de Construcción, 71(e237). https://doi.org/10.3989/mc.2021.00321
[72] Sarkar, M., Adak, D., Tamang, A., Chattopadhyay, B., & Mandal, S. (2015). Genetically-enriched microbe-facilitated self-healing concrete—A sustainable material for a new generation of construction technology. RSC Advances, 5, 105363–105371. https://doi.org/10.1039/C5RA21129A
[73] Scheiner, M., Dickens, T. J., & Okoli, O. (2016). Progress towards self-healing polymers for composite structural applications. Polymer, 83, 260–282. https://doi.org/10.1016/j.polymer.2016.05.051
[74] Schnitzer, O., & Brandão, R. (2022). Absorption characteristics of large acoustic metasurfaces. Philosophical Transactions of the Royal Society A, 380(2220), 20210399.
[75] Shah, K. W., & Huseien, G. F. (2020). Biomimetic self-healing cementitious construction materials for smart buildings. Biomimetics, 5(47). https://doi.org/10.3390/biomimetics5040047
[76] Snoeck, D., & De Belie, N. (2019). Autogenous healing in strain-hardening cementitious materials with and without superabsorbent polymers: An 8-year study. Frontiers in Materials, 6, 48. https://doi.org/10.3389/fmats.2019.00048
[77] Snoeck, D., Van Tittelboom, K., Steuperaert, S., Dubruel, P., & De Belie, N. (2012). Self-healing cementitious materials by the combination of microfibres and superabsorbent polymers. Journal of Intelligent Material Systems and Structures, 25(1), 13–24. https://doi.org/10.1177/1045389X12436700
[78] Song, G., Ma, N., & Li, H.-N. (2006). Applications of shape memory alloys in civil structures. Engineering Structures, 28(9), 1266–1274. https://doi.org/10.1016/j.engstruct.2005.12.010
[79] Soydan, A. M., Sari, A. K., Duymaz, B., Akdeniz, R., & Tunaboylu, B. (2018). Air-cured fiber-cement composite mixtures with different types of cellulose fibers. Advances in Materials Science and Engineering, 2018, 3841514. https://doi.org/10.1155/2018/3841514
[80] Sterner, M., & Stadler, I. (2017). Energiespeicher im Wandel der Zeit. In M. Sterner & I. Stadler (Eds.), Energiespeicher—Bedarf, Technologien, Integration (pp. 3–24). Springer.
[81] Syed, A. S., Sierra-Sosa, D., Kumar, A., & Elmaghraby, A. (2021). IoT in smart cities: A survey of technologies, practices and challenges. Smart Cities, 4(4), 429-475. Martins, F., Patrão, C., Moura, P., & de Almeida, A. T. (2021). A review of energy modeling tools for energy efficiency in smart cities. Smart Cities, 4(4), 1420-1436.
[82] Tang, W., Kardani, O., & Cui, H. (2015). Robust evaluation of self-healing efficiency in cementitious materials—A review. Construction and Building Materials, 81, 233–247. https://doi.org/10.1016/j.conbuildmat.2015.02.032
[83] Tsangouri, E., Van Loo, C., Shields, Y., De Belie, N., Van Tittelboom, K., & Aggelis, D. G. (2022). Reservoir-vascular tubes network for self-healing concrete: Performance analysis by acoustic emission, digital image correlation and ultrasound velocity. Applied Sciences, 12(9), 4821. https://doi.org/10.3390/app12104821
[84] Van Tittelboom, K., De Belie, N., Van Loo, D., & Jacobs, P. (2011). Self-healing efficiency of cementitious materials containing tubular capsules filled with healing agent. Cement and Concrete Composites, 33, 497–505. https://doi.org/10.1016/j.cemconcomp.2011.01.004
[85] Van Tittelboom, K., Tsangouri, E., Van Hemelrijck, D., & De Belie, N. (2015). The efficiency of self-healing concrete using alternative manufacturing procedures and more realistic crack patterns. Smart materials and Concrete Composites, 57, 142–152. https://doi.org/10.1016/j.cemconcomp.2014.11.001
[86] Wack, H., & Bertling, J. (2007). Water-swellable materials–Application in self-healing sealing systems. In Proceedings of the First International Conference on Self Healing Materials, Dordrecht, The Netherlands, 18–20 April 2007. Springer: Berlin/Heidelberg, Germany. https://doi.org/10.1007/978-1-4020-6241-4_9
[87] Wang, J., Soens, H., Verstraete, W., & De Belie, N. (2014). Self-healing concrete by use of microencapsulated bacterial spores. Cement and Concrete Research, 56, 139–152. https://doi.org/10.1016/j.cemconres.2013.11.009
[88] Wang, K., Strandman, S., & Zhu, X. X. (2017). A mini review: Shape memory polymers for biomedical applications. Frontiers of Chemical Science and Engineering, 11(2), 143–153.
[89] Wang, Y., Li, Y., Zhang, Z., & Zhang, Y. (2019). Effect of doping microcapsules on typical electrical performances of self-healing polyethylene insulating composite. Applied Sciences, 9(15), 3039. https://doi.org/10.3390/app9153039
[90] Welsch, F., Kirsch, S.-M., Michaelis, N., Schmidt, M., Schütze, A., & Seelecke, S. (2018). Continuously operating elastocaloric cooling device based on shape memory alloys: Development and realization. In Proceedings of the 8th International Conference on Magnetic Refrigeration at Room Temperature (Thermag VIII) (pp. 1–7). Darmstadt, Germany.
[91] Wiktor, V., & Jonkers, H. M. (2011). Quantification of crack-healing in novel bacteria-based self-healing concrete. Cement and Concrete Composites, 33, 763–770. https://doi.org/10.1016/j.cemconcomp.2011.03.012
[92] Xia, W., Xu, Z., & Xu, T. (2023). Self-healing behaviors and its effectiveness evaluations of fiber reinforced shape memory polyurethane/SBS modified asphalt mortar. Case Studies in Construction Materials, 18, e01784. https://doi.org/10.1016/j.cscm.2022.e01784
[93] Xu, J., Wang, X., & Wang, B. (2018). Biochemical process of ureolysis-based microbial CaCO3 precipitation and its application in self-healing concrete. Applied Microbiology and Biotechnology, 102, 3121–3132. https://doi.org/10.1007/s00253-018-8842-8
[94] Xue, C., Li, W., Li, J., Tam, V. W. Y., & Ye, G. (2018). A review study on encapsulation-based self-healing for cementitious materials. Structural Concrete, 20, 198–212. https://doi.org/10.1002/suco.201700185
[95] Yang, N., & Sun, Q. (2019). Study on the self-monitoring of bending fatigue cumulative damage for carbon nanofiber polyurethane smart materials. Applied Sciences, 9(2128). https://doi.org/10.3390/app9102128
[96] Yang, Z., Hollar, J., He, X., & Shi, X. (2011). A self-healing cementitious composite using oil core/silica gel shell microcapsules. Smart materials and Concrete Composites, 33, 506–512. https://doi.org/10.1016/j.cemconcomp.2011.03.018
[97] Yoneyama, T., & Miyazaki, S. (2008). Shape memory alloys for biomedical applications. Woodhead.
[98] Zareie, S., Issa, A. S., Seethaler, R. J., & Zabihollah, A. (2020). Recent advances in the applications of shape memory alloys in civil infrastructures: A review. Structures, 27, 1535–1550.
[99] Zhang, C., Khorshidi, H., Najafi, E., & Ghasemi, M. (2023). Fresh, mechanical and microstructural properties of alkali-activated composites incorporating nanomaterials: A comprehensive review. Journal of Cleaner Production, 384, 135390.