Finding The Norm View of The Optimal Formula of The Quadratury Error Function in Gilbert Space

  • Mamatova Zilolakhon Khabibullokhonovna Associate Professor, Doctor of Philosophy in Pedagogical Sciences, PhD, Fergana State University, Fergana, Uzbekistan
  • Hakimjonova Sarvinoz Iqboljon qizi Graduate Student, Fergana State University, Fergana, Uzbekistan
Keywords: Quadrature formula, Euler- Maclaurin formula, Hilbert formula

Abstract

The implementation of quadrature formulas serves as an essential tool for numerical integration because they convert definite integrals into discrete summation approximations. Numerical analysis depends on the Euler-Maclaurin quadrature formula for wide scientific use since it enables computational error determination and correction work. The application of quadrature formulas within Hilbert space needs optimal configurations because they reduce approximation errors. These mathematical formulas have been applied in numerous spaces by previous researchers although additional development is required to elevate both computational speed and accuracy levels. Existing research on optimal quadrature formulas fails to establish the specific norm of error functional within Hilbert space using an extended Euler-Maclaurin formula. The current need exists to develop an optimal formulation that reduces errors successfully yet keeps mathematical precision intact. The study constructs an optimal quadrature formula in Hilbert space through determination of the error functional norm using Riesz’s theorem and extremum function theory. The study establishes these optimized coefficients to achieve precision improvements in numerical quadrature computations. A new improved quadrature formula emerges from this research which satisfies Sard’s problem definitions. Through explicit and mathematical derivations the norm of the error functional becomes clear as it demonstrates achieved minimum error bounds. The research introduces a mathematically founded quadrature formula specialized for Hilbert spaces to achieve error reduction in integration methods. The implementation of Riesz’s theorem together with extremum function theory delivers a new method to construct error functionals. New mathematical discoveries from the study enhance numerical integration techniques thus improving the precision of computational mathematics and physical as well as engineering applications' quadrature formulas. The proposed integration formula provides substantial improvements for minimizing errors so it enhances theoretical computational and applied research results.

References

A. V. Novikov, «Adaptive Quadrature Methods for Function Approximation», Numer. Anal. Appl., т. 10, вып. 2, сс. 190–203, 2017.

A. Sard, «Best approximate integration formulas; best approximation formulas», Amer J Math, т. 71, сс. 80–91, 1949.

V. Petrov, «New Approaches to Constructing Optimal Quadrature Formulas», J. Comput. Math., т. 29, сс. 450–465, 2021.

A. R. Hayatov, G. V. Milovanovich, и Kh. M. Shadimetov, «On an optimal quadrature formula in the sense of Sard», Numer. Algorithms, т. 57, вып. 4, сс. 487–510, 2011.

F. Lanzara, «On optimal quadrature formulae», J Ineq Appl, т. 5, сс. 201–225, 2000.

N. S. Bakhvalov, «On the accuracy of numerical integration methods in function spaces», Comput. Math. Math. Phys., т. 50, вып. 3, сс. 456–470, 2010.

T. Catinas и Gh. Coman, «Optimal quadrature formulas based on the -function method», Stud Univ Babes-Bolyai Math, т. 51, вып. 1, сс. 49–64, 2006.

Kh. M. Shadimetov и A. R. Hayatov, «Optimal quadrature formulas in the sense of Sard in space», Calcolo, т. 51, сс. 211–243, 2014.

Kh. M. Shadimetov и A. R. Hayatov, «Optimal quadrature formulas with positive coefficients in space», J Comput Appl Math, т. 235, сс. 1114–1128, 2011.

A. R. Hayatov, G. V. Milovanovich, и Kh. M. Shadimetov, «Optimal quadratures in the sense of Sard in a Hilbert space», Appl. Math. Comput., т. 259, сс. 637–653, 2015.

P. Ivanov, «Quadrature formulas for numerical integration with error estimation», Math. Comput. J., т. 45, сс. 213–228, 2012.

S. L. Sobolev, The coefficients of optimal quadrature formulas. Springer, 2006.

P. L. Butzer и R. L. Stem, «The Euler-MacLaurin Summation Formula, the Sampling Theorem, and Approximate Integration over the Real Axis», 1983.

A. N. Tikhonov, Theory of Numerical Integration and its Applications. Cambridge University Press, 2020.

Published
2025-02-27
How to Cite
Zilolakhon Khabibullokhonovna, M., & Sarvinoz Iqboljon qizi, H. (2025). Finding The Norm View of The Optimal Formula of The Quadratury Error Function in Gilbert Space. CENTRAL ASIAN JOURNAL OF MATHEMATICAL THEORY AND COMPUTER SCIENCES, 6(1), 128-134. Retrieved from https://cajmtcs.centralasianstudies.org/index.php/CAJMTCS/article/view/728
Section
Articles