Modeling the Evolution of Population Dynamics Using Ordinary Differential Equations: Mathematical Analysis and Modern Applications

  • Basheer Abd Al Rida Sadiq Imam Kadhum College For Islamic Science University, Iraq
Keywords: mathematical modeling, population dynamics, predator-prey interactions, epidemiological modeling, neural ODEs

Abstract

Population dynamics modeling plays a critical role in understanding ecological stability, epidemiological spread, and sustainable resource management. Classical models such as the logistic growth and Lotka-Volterra equations offer foundational insights but often overlook environmental stochasticity and multispecies complexity. Existing frameworks frequently simplify nonlinear feedbacks or exclude real-time ecological interactions, limiting predictive capacity in dynamic systems. This study advances population modeling by integrating ordinary differential equations (ODEs) with modern computational tools, including machine learning-enhanced simulations and neural ODE frameworks. Analytical techniques such as linear stability, Lyapunov methods, and bifurcation analysis revealed equilibrium classifications and transitions in logistic, predator-prey, and epidemiological models. Numerical simulations validated theoretical findings, showing that hybrid AI-augmented models achieved higher accuracy (relative error 2.1%) and computational efficiency (98%) than traditional models. A novel contribution lies in embedding neural networks within classical ODE systems to dynamically adjust model parameters using heterogeneous data streams. The developed framework enhances the realism and adaptability of population models, with direct applications in conservation planning, disease control, and ecological forecasting, thus offering a versatile and interdisciplinary tool for addressing real-world biological challenges.

References

. Taylor, M., Taylor, T. J., & Kiss, I. Z. (2012). Epidemic threshold and control in a dynamic network. Physical Review E—Statistical, Nonlinear, and Soft Matter Physics, 85(1), 016103.‏

. Barker, S., & Lear, C. H. (2023). Climate tipping point interactions and cascades: a review. Earth System Dynamics.‏

. Wegdell, F., Hammerschmidt, K., & Fischer, J. (2019). Conserved alarm calls but rapid auditory learning in monkey responses to novel flying objects. Nature ecology & evolution, 3(7), 1039-1042.‏

. Yin, K., Wu, B., Zhu, R., Xiao, L., Tan, Z., He, G., ... & Yin, G. (2022). DLDP-FL: Dynamic local differential privacy federated learning method based on mesh network edge devices. Journal of Computational Science, 63, 101789.‏

. Martinho, A. D., Saporetti, C. M., & Goliatt, L. (2023). Approaches for the short-term prediction of natural daily streamflows using hybrid machine learning enhanced with grey wolf optimization. Hydrological Sciences Journal, 68(1), 16-33.‏

. Vanwambeke, S. O., & Schimit, P. H. T. (2021). Tick bite risk resulting from spatially heterogeneous hazard, exposure and coping capacity. Ecological Complexity, 48, 100967.‏

. Schmiester, L., Weindl, D., & Hasenauer, J. (2020). Parameterization of mechanistic models from qualitative data using an efficient optimal scaling approach. Journal of Mathematical Biology, 81(2), 603-623.‏

. Mehta, R. S., & Kraus, J. A. (2021). Eco-evolutionary dynamics of autotomy. Theoretical Ecology, 14(3), 445-465.‏

. Yang, B., & Yang, J. (2022). Pattern transformation in higher-order lumps of the Kadomtsev–Petviashvili I equation. Journal of Nonlinear Science, 32(4), 52.‏

. Pettersson, S., & Nilsson Jacobi, M. (2021). Spatial heterogeneity enhance robustness of large multi-species ecosystems. PLOS Computational Biology, 17(10), e1008899.‏

. Berestycki, H., Roquejoffre, J. M., & Rossi, L. (2021). Propagation of epidemics along lines with fast diffusion. Bulletin of Mathematical Biology, 83(1), 2.‏

. Gross, T., D’Lima, C. J. D., & Blasius, B. (2006). Epidemic dynamics on an adaptive network. Physical review letters, 96(20), 208701.‏

. Mukherjee, S., Sambarey, A., Prashanthi, K., & Chandra, N. (2013). Current trends in modeling host–pathogen interactions. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 3(2), 109-128.‏

. Song, Y., Jiang, H., Liu, Q. X., & Yuan, Y. (2017). Spatiotemporal dynamics of the diffusive Mussel-Algae model near Turing-Hopf bifurcation. SIAM Journal on Applied Dynamical Systems, 16(4), 2030-2062.‏

. Zhao, S., Zhao, Y., Tang, B., Gao, D., Guo, Z., Chong, M. K., ... & Wang, M. H. (2021). Shrinkage in serial intervals across transmission generations of COVID-19. Journal of theoretical biology, 529, 110861.‏

. Oraby, T., Suazo, E., & Arrubla, H. (2023). Probabilistic solutions of fractional differential and partial differential equations and their Monte Carlo simulations. Chaos, Solitons & Fractals, 166, 112901.‏

. Pandey, A., & Jain, K. (2022). A robust deep attention dense convolutional neural network for plant leaf disease identification and classification from smart phone captured real world images. Ecological Informatics, 70, 101725.‏

. Rilling, J., Witte, R., Schuegerl, P., & Charland, P. (2008). Beyond information silos—An omnipresent approach to software evolution. International Journal of Semantic Computing, 2(04), 431-468.‏

. Jahanbakht, M., Xiang, W., Robson, B., & Azghadi, M. R. (2022). Nitrogen prediction in the Great Barrier Reef using finite element analysis with deep neural networks. Environmental Modelling & Software, 150, 105311.‏

. Schmiester, L., Weindl, D., & Hasenauer, J. (2020). Parameterization of mechanistic models from qualitative data using an efficient optimal scaling approach. Journal of Mathematical Biology, 81(2), 603-623.‏

. Mehta, R. S., & Kraus, J. A. (2021). Eco-evolutionary dynamics of autotomy. Theoretical Ecology, 14(3), 445-465.‏

. Pettersson, S., & Nilsson Jacobi, M. (2021). Spatial heterogeneity enhance robustness of large multi-species ecosystems. PLOS Computational Biology, 17(10), e1008899.‏

. Berestycki, H., Roquejoffre, J. M., & Rossi, L. (2021). Propagation of epidemics along lines with fast diffusion. Bulletin of Mathematical Biology, 83(1), 2.‏

. Vanwambeke, S. O., & Schimit, P. H. T. (2021). Tick bite risk resulting from spatially heterogeneous hazard, exposure and coping capacity. Ecological Complexity, 48, 100967.‏

. Zhao, S., Zhao, Y., Tang, B., Gao, D., Guo, Z., Chong, M. K., ... & Wang, M. H. (2021). Shrinkage in serial intervals across transmission generations of COVID-19. Journal of theoretical biology, 529, 110861.‏

. Oraby, T., Suazo, E., & Arrubla, H. (2023). Probabilistic solutions of fractional differential and partial differential equations and their Monte Carlo simulations. Chaos, Solitons & Fractals, 166, 112901.‏

. Pandey, A., & Jain, K. (2022). A robust deep attention dense convolutional neural network for plant leaf disease identification and classification from smart phone captured real world images. Ecological Informatics, 70, 101725.‏

Published
2025-04-11
How to Cite
Sadiq, B. A. A. R. (2025). Modeling the Evolution of Population Dynamics Using Ordinary Differential Equations: Mathematical Analysis and Modern Applications. CENTRAL ASIAN JOURNAL OF MATHEMATICAL THEORY AND COMPUTER SCIENCES, 6(3), 303-312. Retrieved from https://cajmtcs.centralasianstudies.org/index.php/CAJMTCS/article/view/751
Section
Articles