Main Article Content


Our platform can identify every single object based on the input data. This work aims to improve the present model's detection accuracy rate by analyzing films for items. To "see" the bigger picture, we implement a specialized dark web CNN algorithm. The YOLO technique can also be used to anticipate the likelihood of a full image, making it ideal for speedy real-time object recognition. The suggested approach can estimate the object's size with much greater precision. Merging a tailored dark net convolutional neural network with the YOLO algorithm provides an efficient approach for estimating object scale. As mentioned in the section on object localization, the method first grids the image and then applies the image classification and localization technique to each cell. The entire image can be processed by this method. The detection accuracy is also improved by combining the coco model with the tensor flow.


Fully Convolutional Neural Network You Only Look Once Common Object in Context Single Shot Detection Graphics Processing Uni Frames Per Second

Article Details

How to Cite


  1. 1. P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan, “Discriminatively trained part-based models for object detection,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 9, pp. 1627 1645, Sep. 2010.
  2. 2. B. Leibe, A. Leonardis, and B. Schiele, “Interleaved categorization and segmentation for robust object detection,” Int. J. Comput. Vis., vol. 77, nos. 1-3, pp. 259-289, May 2008.
  3. 3. P. Viola and M. Jones, “Boosted cascade of simple features are used for rapid object detection,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. (CVPR), vol. 1. Dec. 2001, pp. 511-518.
  4. 4. M. Weber, M. Welling, and P. Perona, “Towards automatic discovery of object categories,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., vol. 2. Jun. 2000, pp. 101-108.
  5. 5. A. Ayvaci and S. Soatto, “Detachable object detection always uses segmentation and also by depth ordering from short video,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 10, pp. 1942 1951, Oct. 2012.
  6. 6. S. Kumar and M. Hebert, ``A hierarchical eld framework for unified context-based classi cation,'' in Proc. 10th IEEE Int. Conf. Comput. Vis. (ICCV), vol. 2. Oct. 2005, pp. 1284-1291.
  7. 7. “From the Director’s Desk: Deep Learning - Road to complete automation,” Northwestern Engineering. [Online]. Available: [Accessed: 17-May-2022].
  8. 8. Pooja Chopra, N. Junath, Sitesh Kumar Singh, Shakir Khan, R. Sugumar, Mithun Bhowmick, "Cyclic GAN Model to Classify Breast Cancer Data for Pathological Healthcare Task", BioMed Research International, vol. 2022, Article ID 6336700, 12 pages, 2022.
  9. 9. Khan, S. (2016). How Data Mining Can Help Curb City Crime. International Journal of Control Theory and Applications (IJCTA), 9(23), 483-488.
  10. 10. AlAjmi, M., & Khan, S. (2013). Mobile Community Networks Information Investigation for Additional Significance. Paper presented at the ICERI2013 Proceedings.
  11. 11. Khan, S. (2021). Data Visualization to Explore the Countries Dataset for Pattern Creation. International Journal of Online Biomedical Engineering, 17(13), 4-19. doi:10.3991/ijoe.v17i13.20167
  12. 12. Khan, S. (2021). Study Factors for Student Performance Applying Data Mining Regression Model Approach. International Journal of Computer Science Network Security, 21(2), 188-192.
  13. 13. AlAjmi, M., & Khan, S. (2015). Part of Ajax And Openajax In Cutting Edge Rich Application Advancement For E-Learning. Paper presented at the INTED2015 Proceedings.
  14. 14. Khan, S., & Alfaifi, A. (2020). Modeling of Coronavirus Behavior to Predict It’s Spread. International Journal of Advanced Computer Science Applications, 11(5), 394-399.
  15. 15. Khan, S. (2020). Artificial Intelligence Virtual Assistants (Chatbots) are Innovative Investigators. International Journal of Computer Science Network Security, 20(2), 93-98.
  16. 16. Gupta, G., Khan, S., Guleria, V., Almjally, A., Alabduallah, B. I., Siddiqui, T., Albahlal, B. M., et al. (2023). DDPM: A Dengue Disease Prediction and Diagnosis Model Using Sentiment Analysis and Machine Learning Algorithms. Diagnostics, 13(6), 1093.
  17. 17. Khan, S., & Alshara, M. (2019). Development of Arabic evaluations in information retrieval. International Journal of Advanced Applied Sciences, 6(12), 92-98.
  18. 18. Shaikh Abdul Hannan, “Development of Digital Transformation in Higher Education Institutions”, Journal of Computer Science & Computational Mathematics, Volume 13, Issue 01, pp 1-8, March 2023.
  19. 19. Shaikh Abdul Hannan, Pushparaj Pal, “Detection and classification of kidney disease using convolutional neural networks”, Journal of Neurology and Neurorehabilitation Research, Vol 8, Issue 2, pp 1-7, 2023.
  20. 20. Shaikh Abdul Hannan; Ms. Preeti Gupta; P. Vanitha; Rajesh Singh; Dimple Saini; Mohit Tiwari, “Analysis of blockchain technology based on digital management systems and data mining technology”, IEEE Xplore, 22 March 2023.
  21. 21. Heena Vig, Shaikh Abdul Hannan, Asok Kumar, Rajshree Singh, Juhi Juwairiyaah, Neen Kuriakose, “Gender and Age Classification Enabled Blockchain Security Mechanism for assisting Mobile Application, IEEE Xplore, 22nd March 2023.
  22. 22. Shaikh Abdul Hannan, “A Blockchain Technology to secure electronic Health Records in Healthcare System, London Journal of Research in Computer Science and Technology, Vol 23, Issue 1, PP 1-13, London Journal Press, 10 Feb 2023.
  23. 23. Shaikh Abdul Hannan, An Examination of the Blockchain Technology: Challenges and Future Opportunities, International Journal Of Engineering And Computer Science, Volume11 Issue 09 November2022, Page No.25612-25619.
  24. 24. Shaikh Abdul Hannan, “Application and Scope of Blockchain in Technical Research and Higher Education” Vol 20, Issue 15, page 6185-6191, NeuroQuantology, Nov 2022.
  25. 25. Shaikh Abdul Hannan, Manjusha Hivre, Lata, M., Krishna, B. H., Sathyasiva, S., & Arshad, M. W. “Brain damage detection using Machine learning approach”, International Journal of Health Sciences, Special Issue VIII, 27 Sept. 2022, PP 4910-4924.
  26. 26. Dubey, A., Mujoo, Shaikh Abdul Hannan., Satpathy, G., Arshad, M. W., & Manikandan, E., “Cancer detection using RNA sequencing and deep learning”, International Journal of Health Sciences, Special Issue VIII, 27 Sept. 2022, PP 4925-4939.
  27. 27. Arun Prasad, Shaikh Abdul Hannan, Kavita Panjwani, Muthe Ramu, Kawaender Singh Sidhu, Nagabhusanam Tida, “Detailed Investigation of the role of Artificial Intelligence in stock market predictions, British Journal of Administrative Management, Vol 58, Issue 06, 6th Sept 2022, UK.
  28. 28. Veronin, M. A., Schumaker, R. P., Dixit, R. R., & Elath, H. (2019). Opioids and frequency counts in the US Food and Drug Administration Adverse Event Reporting System (FAERS) database: A quantitative view of the epidemic. Drug, Healthcare and Patient Safety, 65–70.
  29. 29. Veronin, M. A., Schumaker, R. P., & Dixit, R. (2020). The irony of MedWatch and the FAERS database: an assessment of data input errors and potential consequences. Journal of Pharmacy Technology, 36(4), 164–167.
  30. 30. Veronin, M. A., Schumaker, R. P., Dixit, R. R., Dhake, P., & Ogwo, M. (2020). A systematic approach to’cleaning’of drug name records data in the FAERS database: a case report. International Journal of Big Data Management, 1(2), 105–118.
  31. 31. Schumaker, R. P., Veronin, M. A., Rohm, T., Boyett, M., & Dixit, R. R. (2021). A Data Driven Approach to Profile Potential SARS-CoV-2 Drug Interactions Using TylerADE. Journal of International Technology and Information Management, 30(3), 108–142.
  32. 32. Schumaker, Robert, Veronin, M., Rohm, T., Dixit, R., Aljawarneh, S., & Lara, J. (2021). An Analysis of Covid-19 Vaccine Allergic Reactions. Journal of International Technology and Information Management, 30(4), 24–40.
  33. 33. S. R. Sandeep, S. Ahamad, D. Saxena, K. Srivastava, S. Jaiswal, and A. Bora, ‘To understand the relationship between Machine learning and Artificial intelligence in large and diversified business organisations’, Materials Today: Proceedings, vol. 56, pp. 2082–2086, 2022.
  34. 34. V. Jain, A. Al Ayub Ahmed, V. Chaudhary, D. Saxena, M. Subramanian, and M. K. Mohiddin, ‘Role of Data Mining in Detecting Theft and Making Effective Impact on Performance Management’, in Proceedings of Second International Conference in Mechanical and Energy Technology, 2023, pp. 425–433.
  35. 35. D. Saxena, S. Kumar, P. K. Tyagi, A. Singh, B. Pant, and V. H. Reddy Dornadula, ‘Automatic Assisstance System Based on Machine Learning for Effective Crowd Management’, in 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering, 2022, pp. 01–06.
  36. 36. D. Saxena, "A Non-Contact Based System to Measure SPO2 and Systolic/Diastolic Blood Pressure using Rgb-Nir Camera." Order No. 29331388, The University of Texas at Arlington, United States -- Texas, 2022.
  37. 37. Akhilesh Kumar Sharma , Shamik Tiwari, Gaurav Aggarwal, Nitika Goenka, Anil Kumar, Prasun Chakrabarti, Tulika Chakrabarti, Radomir Gono, Zbigniew Leonowicz, Michal Jasiński , “Dermatologist-Level Classification of Skin Cancer Using Cascaded Ensembling of Convolutional Neural Network and Handcrafted Features Based Deep Neural Network”, IEEE Access , 10 : 17920-17932, 2022.
  38. 38. Gaurav Kumawat, Santosh Kumar Viswakarma, Prasun Chakrabarti , Pankaj Chittora, Tulika Chakrabarti , Jerry Chun-Wei Lin, “Prognosis of Cervical Cancer Disease by Applying Machine Learning Techniques”, Journal of Circuits, Systems, and Computers, 2022.
  39. 39. Abrar Ahmed Chhipa, Prasun Chakrabarti, Vadim Bolshev , Tulika Chakrabarti , Gennady Samarin, Alexey N. Vasiyev, Sandeep Ghosh, Alexander Kudryavtsev, “Modeling and Control Strategy of Wind Energy Conversion System with Grid-Connected Doubly Fed Induction Genenator”, Energies , 15, 6694, 2022.
  40. 40. Tulika Chakrabarti, Sibabrata Mukhopadhyay, Prasun Chakrabarti, Gholamreza Hatam, Mohammad Nami, “Phenyl Ethanoid Glycoside from the Bark of Oroxylum indicum Vent: a Potential Inhibitor of DNA Topoisomerase IB of Leishmania donovani”, Journal of Advanced Medical Sciences and Applied Technologies, 2022.
  41. 41. B Prasanalakshmi , Bui Thanh Hung, Prasun Chakrabarti, Xue-bo Jin, Tulika Chakrabarti, Ahmed Elngar, “A Novel Artificial Intelligence-Based Predictive Analytics Technique to Detect Skin Cancer”, 2022.
  42. 42. S Ningthoujam, T Chingkheinganba, S K Chakraborty, A Elngar, Prasun Chakrabarti, Tulika Chakrabarti, Praveen, S. Phani , Amit Gupta, Margala, Martin, “Performance Analysis for Molecular Communication Under Feedback Channel Using Multipath and Single Path Technique”, Pre-print, 2022.
  43. 43. Pankaj Chittora, Tulika Chakrabarti, Papiya Debnath, Amit Gupta, Prasun Chakrabarti, S Phani Praveen, Martin Margala, Ahmed A Elngar , “Experimental analysis of earthquake prediction using machine learning classifiers, curve fitting, and neural modeling”, Pre-print, 2022.
  44. 44. Umesh Agarwal, Abrar Ahmed Chhipa, Tulika Chakrabarti, Amit Gupta, S Phani Praveen, Prasun Chakrabarti, Neha Sharma, Ahmed A Elngar , “Reliability Evaluation of Radial Distribution Network for Educational purpose using Greedy Search Approach-Distribution Network Data and Results”, Pre-print, 2022.
  45. 45. Nagendra Singh, Manish Tiwari, Tulika Chakrabarti, Prasun Chakrabarti, Om Prakash Jena, Ahmed A Elngar, Vinayakumar Ravi, Martin Margala, “Minimization of Environmental Emission and cost of generation by using economic load dispatch”, Pre-print, 2022.
  46. 46. Akhilesh Deep Arya, Sourabh Singh Verma, Prasun Chakrabarti, Tulika Chakrabarti, Ahmed A Elngar, Mohammad Nami, Ali-Mohammad Kamali, “A Systematic Review on Machine Learning and Deep Learning Techniques in the Effective Diagnosis of Alzheimer’s Disease”, Pre-print, 2022
  47. 47. Suchismita Gupta, Bikramjit Sarkar, Subhrajyoti Saha, Indranath Sarkar, Prasun Chakrabarti, Sudipta Sahana, Tulika Chakrabarti, Ahmed A Elngar, “A Novel Approach Toward the Prevention of the Side Channel Attacks for Enhancing the Network Security”, Pre-print, 2022.
  48. 48. Naveen S Pagad, N Pradeep, Tulika Chakrabarti, Prasun Chakrabarti, Ahmed A Elngar, Martin Margala, Mohammad Nami, Neha Sharma, Samuel Frimpong, “Clinical XLNet-based End-to-End Knowledge Discovery on Clinical Text Data using Natural Language Processing”, Pre-print, 2022
  49. 49. K Suvarna Vani, Bui Thanh Hung, Prasun Chakrabarti, Tulika Chakrabarti, Ahmed A Elngar, “Detection and Classification of Invasive Ductal Carcinoma using Artificial Intelligence”, Pre-print, 2022.
  50. 50. KS Balamurugan, Prasun Chakrabarti, Tulika Chakrabarti, Amit Gupta, Ahmed A Elngar, Mohammad Nami, Vinayakumar Ravi, Grienggrai Rajchakit, M Ali Akbar, “Improving the Performance of Diagnosing Chronic obstructive Lung Disease Using Outlier Detection with Decision Tree Algorithm”, Pre-print, 2022.
  51. 51. Ruhul Amin Hazarika, Arnab Kumar Maji, Debdatta Kandar, Prasun Chakrabarti, Tulika Chakrabarti, KS Jagannatha Rao, Jose Carvalho, Babak Kateb, Mohammad Nami, “An evaluation on changes in Hippocampus size for Cognitively Normal (CN), Mild Cognitive Impairment (MCI), and Alzheimer’s disease (AD) patients using Fuzzy Membership Function”, OSF Preprints, 2021.
  52. 52. Jitendra Shreemali, Prasun Chakrabarti, Tulika Chakrabarti, Sandeep Poddar, Daniel Sipple, Babak Kateb, Mohammad Nami, “A Machine Learning Perspective on Causes of Suicides and identification of Vulnerable Categories using Multiple Algorithms”, medRxiv, 2021.
  53. 53. Papiya Debnath, Pankaj Chittora, Tulika Chakrabarti, Prasun Chakrabarti, Zbigniew Leonowicz, Michal Jasinski , Radomir Gono, Elżbieta Jasińska, “Analysis of earthquake prediction in India using supervised machine learning classifiers”, Sustainibility ,13(2):971 , 2021.
  54. 54. 21. Pankaj Chittora, Sandeep Chaurasia, Prasun Chakrabarti, Gaurav Kumawat, Tulika Chakrabarti, Zbigniew Leonowiz, Michael Jaisinski, Lukasz Jaisinski, Radomir Gono, Elzbieta Jaisinski, Vadim Bolshev, “Prediction of Chronic Kidney Disease - A Machine Learning perspective", IEEE Access, 9 : 17312-17334,2021
  55. 55. Akhilesh Kumar Sharma, Gaurav Aggarwal, Sachit Bhardwaj, Prasun Chakrabarti, Tulika Chakrabarti, Jemal Hussain, Siddhartha Bhattarcharyya, Richa Mishra, Anirban Das, Hairulnizam Mahdin, “Classification of Indian Classical Music with Time-Series Matching using Deep Learning”, IEEE Access , 9 : 102041-102052 , 2021.
  56. 56. Abrar Ahmed Chhipa , Vinod Kumar, R. R. Joshi, Prasun Chakrabarti, Michal Jaisinski, Alessandro Burgio, Zbigniew Leonowicz, Elzbieta Jasinska, Rajkumar Soni, Tulika Chakrabarti, “Adaptive Neuro-fuzzy Inference System Based Maximum Power Tracking Controller for Variable Speed WECS”, Energies ,14(19) :6275, 2021.
  57. 57. Tulika Chakrabarti, Sibabrata Mukhopadhyay, Prasun Chakrabarti, Gholamreza Hatam, Mohammad Nami, “Phenyl Ethanoid Glycoside from the bark of Oroxylum indicum vent : a potential inhibitor of DNA Topoisomerase IB of Leismania donovani”, Journal of Advanced Medical Sciences and Applied Technologies , 2021.
  58. 58. Sreemoy Kanti Das, GS Chakraborthy, Tulika Chakrabarti, Prasun Chakrabarti, Mohammad Javad Gholamzadeh, Mohammad Nami, “Evaluation of nootropic activity of standardized Epipremnum aureum extract against scopolamine-induced amnesia in experimental animals”, Journal of Advanced Medical Sciences and Applied Technologies , 6(1): 64-71,2021
  59. 59. Prasun Chakrabarti , Tulika Chakrabarti , Mayank Sharma. , D Atre D, K.Baba Pai, “Quantification of Thought Analysis of Alcohol-addicted persons and memory loss of patients suffering from stage-4 liver cancer”, Advances in Intelligent Systems and Computing, 1053, pp.1099-1105, 2020.
  60. 60. Prasun Chakrabarti, Tulika Chakrabarti , Biswajit Satpathy, I SenGupta , Jonathan Andrew Ware, “Analysis of strategic market management in the light of stochastic processes, recurrence relation, Abelian group and expectation”, Advances in Artificial Intelligence and Data Engineering, 1133 , pp.701-710, 2020.
  61. 61. Prasun Chakrabarti, Siddhant Bane, Biswajit Satpathy , Mark Goh , B N Datta , Tulika Chakrabarti, “Compound Poisson Process and its Applications in Business”, Lecture Notes in Electrical Engineering, 601, pp.678-685,2020.
  62. 62. Prasun Chakrabarti , Biswajit Satpathy, Siddhant Bane, Tulika Chakrabarti, N S Chaudhuri, Pierluigi Siano , “Business forecasting in the light of statistical approaches and machine learning classifiers”, Communications in Computer and Information Science , 1045, pp.13-21, 2019
  63. 63. Manish Tiwari, Prasun Chakrabarti, Tulika Chakrabarti , “Novel work of diagnosis in liver cancer using Tree classifier on liver cancer dataset ( BUPA liver disorder )” , Communications in Computer and Information Science , 837, pp.155-160, 2018
  64. 64. Manish Tiwari, Prasun Chakrabarti, Tulika Chakrabarti , “Performance analysis and error evaluation towards the liver cancer diagnosis using lazy classifiers for ILPD”, Communications in Computer and Information Science , 837, pp.161-168,2018
  65. 65. Prasun Chakrabarti, Manish Tiwari, Tulika Chakrabarti, “Performance Vector analysis in context to liver cancer-A Support Vector Machine Approach with a survey on the latest Perspectives of Chemistry in liver cancer treatment”, International Journal of Computer Science and Information Security, 14(9):1238,2016
  66. 66. A. Thakur and S. K. Mishra, “Review on vision-based control using artificial intelligence in autonomous ground vehicle,” in Proceedings of the International Conference on Paradigms of Computing, Communication and Data Sciences, Singapore: Springer Nature Singapore, 2023, pp. 617–626.
  67. 67. V. B Murali Krishna, V. Sandeep, SS Murthy and Kishore Yadlapati “Experimental Investigations on Performance Comparison of Self Excited Induction Generator and Permanent Magnet Synchronous Generator for Small scale Renewable Applications”, Renewable Energy, Vol. 195, pp. 431-441, 2022.
  68. 68. V. B Murali Krishna, SSSR Sarathbabu Duvvuri, Kishore Yadlapti, Tripura Pidikiti, Sudheer Peddeeti, “Deployment and Performance Measurement of Renewable Energy based Permanent Magnet Synchronous Generator System”, Measurement: Sensors, Vol. 24, No. 100478, December 2022.
  69. 69. V. B Murali Krishna, Sandeep, V “Experimental Investigations on Loading Capacity and Reactive Power Compensation of Star Configured Three Phase Self Excited Induction Generator for Distribution Power Generation”, Distributed Generation and Alternative Energy Journal, Vol. 37, Issue 3, 2022, pp. 725-748.
  70. 70. Bala Murali Krishna, V and Vuddanti, Sandeep. "Identification of the best topology of delta configured three phase induction generator for distributed generation through experimental investigations" International Journal of Emerging Electric Power Systems, Vol. 23, No. 3, 2022, pp. 329-341.
  71. 71. SSSR Sarathbabu Duvvuri, V. Sandeep and Kishore Yadlapati, V. B Murali Krishna, “Research on Induction Generators for Isolated Rural Applications: State of Art and Experimental Demonstration”, Measurement: Sensors, Vol. 24, No. 100541, December 2022,
  72. 72. Rathi, S., Chaturvedi, S., Abdullah, S., Rajput, G., Alqahtani, N. M., Chaturvedi, M., Gurumurthy, V., Saini, R., Bavabeedu, S. S., & Minervini, G. (2023). Clinical Trial to Assess Physiology and Activity of Masticatory Muscles of Complete Denture Wearer Following Vitamin D Intervention. Medicina, 59(2), 410.
  73. 73. Kaur, K., Suneja, B., Jodhka, S., Saini, R. S., Chaturvedi, S., Bavabeedu, S. S., Alhamoudi, F. H., Cicciù, M., & Minervini, G. (2023). Comparison between Restorative Materials for Pulpotomised Deciduous Molars: A Randomized Clinical Study. Children, 10(2), 284.
  74. 74. Kumar A, Saini RS, Sharma V , Rai R U , Gupta P, Sabharwal P ( 2021) , Assessment of Pattern of Oral Prosthetic Treatment and Prevalence of Oral Diseases in Edentulous Patients in North Indian Population: A Cross-sectional Study. J Pharm Bioallied Sci. 2021 Jun; 13(Suppl 1): S187–S189.
  75. 75. Solanki, J., Jain, R., Singh, R., Gupta, S., Arya, A., & Tomar, D. (2015). Prevalence of Osteosclerosis Among Patients Visiting Dental Institute in Rural Area of Western India. Journal of clinical and diagnostic research : JCDR, 9(8), ZC38–ZC40.
  76. 76. A. R. Yeruva and V. B. Ramu, “Optimising AIOps system performance for e-commerce and online retail businesses with the ACF model,” Int. J. Intellect. Prop. Manag., vol. 1, no. 1, p. 1, 2022.
  77. 77. V. B. Ramu and A. R. Yeruva, “AIOps research innovations, performance impact and challenges faced,” Int. J. Syst. Syst. Eng., vol. 13, no. 3, p. 1, 2023.
  78. 78. A. Khelifi, A. Abran, and L. Buglione, "2.4 a system of reference for software measurements with ISO 19761 (COSMIC FFP)," in COSMIC Function Points: Theory and Advanced Practices, vol. 142, 2016.
  79. 79. A. Khelifi and A. Abran, "Design steps for developing software measurement standard etalons for iso 19761 (cosmic-ffp)," in WSEAS International Conference on COMPUTERS, 2007.
  80. 80. M. A. Talib, A. Khelifi, A. Abran, and O. Ormandjieva, "Techniques for quantitative analysis of software quality throughout the sdlc: The swebok guide coverage," in 2010 Eighth ACIS International Conference on Software Engineering Research, Management and Applications, pp. 321-328, 2010.
  81. 81. M. A. Talib, A. Khelifi, and T. Ugurlu, "Using ISO 27001 in teaching information security," in IECON 2012-38th Annual Conference on IEEE Industrial Electronics Society, pp. 3149-3153, 2012.
  82. 82. M. Aburrous and A. Khelifi, "Phishing detection plug-in toolbar using intelligent Fuzzy-classification mining techniques," in The international conference on soft computing and software engineering [SCSE’13], San Francisco State University, San Francisco, California, USA, 2013.
  83. 83. A. Khelifi, Y. Grisi, D. Soufi, D. Mohanad, and P. V. S. Shastry, "M-Vote: a reliable and highly secure mobile voting system," in 2013 Palestinian International Conference on information and communication technology, pp. 90-98, 2013.
  84. 84. A. Khelifi, M. Aburrous, M. A. Talib, and P. V. S. Shastry, "Enhancing protection techniques of e-banking security services using open source cryptographic algorithms," in 2013 14th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing, pp. 89-95, 2013.
  85. 85. A. Khelifi and K. H. Hyari, "A mobile device software to improve construction sites communications" MoSIC"," International Journal of Advanced Computer Science and Applications, vol. 7, no. 11, pp. n/a, 2016.
  86. 86. M. A. Talib, O. Ormandjieva, A. Abran, A. Khelifi, and L. Buglione, "Scenario-based Black Box Testing in COSMIC-FFP: a case study," in Software Quality Professional, vol. 8, no. 3, pp. 22, 2006.
  87. 87. M. A. Talib, A. Khelifi, and L. Jololian, "Secure software engineering: A new teaching perspective based on the SWEBOK," in Interdisciplinary Journal of Information, Knowledge, and Management, vol. 5, pp. 83-99, 2010.
  88. 88. Ravinder M and Kulkarni V (2023), Intrusion detection in smart meters data using machine learning algorithms: A research report. Front. Energy Res. 11:1147431. doi: 10.3389/fenrg.2023.1147431
  89. 89. R. M and V. Kulkarni, "Energy-Efficient Algorithm for Cluster Formation and Cluster Head Selection for WSN," 2022 IEEE Bombay Section Signature Conference (IBSSC), Mumbai, India, 2022, pp. 1-6.
  90. 90. M. Ravinder and V. Kulkarni, "A Review on Cyber Security and Anomaly Detection Perspectives of Smart Grid," 2023 5th International Conference on Smart Systems and Inventive Technology (ICSSIT), Tirunelveli, India, 2023, pp. 692-697.
  91. 91. Vikram K, Sarat Kumar Sahoo, "Interference-Aware Adaptive Transmission Power Control for ZigBee Wireless Networks" Vol. 828, Pg. No: 56-69, June-2018, Communications in Computer and Information Science, Springer.
  92. 92. Vikram K, Sarat Kumar Sahoo, “A Collaborative Frame Work for Avoiding the Interference in 2.4GHz Frequency Band Smart Grid Applications” Vol. No. 22, No.1, Pg. No: 48-56, June-2018. Electronics Journal.
  93. 93. Vikram K, Sarat Kumar Sahoo, K. Venkata Lakshmi Narayana, "Forward Error Correction based Encoding Technique for Cross-layer Multi Channel MAC protocol", Vol. 117, Pg. No 847-854, 2017, Energy Procedia.
  94. 94. Vikram K, Sarat Kumar Sahoo, K. V. L. Narayana, “A Survey on Interference Avoiding Methods for Wireless Sensor Networks working in the 2.4GHz Frequency Band”, Vol. 13, Number 3, Pg No: 59 – 81, July-2020, Journal of Engineering Science and Technology Review,
  95. 95. Yuvaraj. P, Vikram K, K. Venkata Lakshmi Narayana, A Review on state of art variants of LEACH protocol for Wireless Sensor Networks, Sensors & Transducers Journal. vol. 186, Issue 3, pp.25-32, March 2015.
  96. 96. V. Chaudhary, Z. Dalwai and Vikram Kulkarni, "Intelligent Distraction and Drowsiness Detection System for Automobiles," 2021 International Conference on Intelligent Technologies (CONIT), 2021, pp. 1-4.
  97. 97. N. Verma, S. Patil, B. Sinha and Vikram Kulkarni, "Object Detection for COVID Rules Response and Crowd Analysis," 2021 Innovations in Power and Advanced Computing Technologies (i-PACT), 2021, pp. 1-6.
  98. 98. M. M. Kirmani and A. Wahid, “Revised use case point (re-UCP) model for software effort estimation,” International Journal of Advanced Computer Science and Applications, vol. 6, no. 3, 2015.
  99. 99. M. M. Kirmani and A. Wahid, “Impact of modification made in re-UCP on software effort estimation,” Journal of Software Engineering and Applications, vol. 08, no. 06, pp. 276–289, 2015.
  100. 100. Syed Immamul Ansarullah, Syed Mohsin Saif, Pradeep Kumar, Mudasir Manzoor Kirmani, "Significance of Visible Non-Invasive Risk Attributes for the Initial Prediction of Heart Disease Using Different Machine Learning Techniques", Computational Intelligence and Neuroscience, vol. 2022, Article ID 9580896, 12 pages, 2022.
  101. 101. Syed Immamul Ansarullah, Syed Mohsin Saif, Syed Abdul Basit Andrabi, Sajadul Hassan Kumhar, Mudasir M. Kirmani, Dr. Pradeep Kumar, "An Intelligent and Reliable Hyperparameter Optimization Machine Learning Model for Early Heart Disease Assessment Using Imperative Risk Attributes", Journal of Healthcare Engineering, vol. 2022, Article ID 9882288, 12 pages, 2022.
  102. 102. D. R. Patil, B. S. Borkar, A. V. Markad, and H. P. Singh, ‘Applications of Artificial Intelligence using Baye’s Theorem: Survey’, Universal Review, vol. 8, no. 02, pp. 198–203, 2019.
  103. 103. D. R. Patil and R. Purohit, ‘Dynamic Resource Allocation and Memory Management using Deep Convolutional Neural Network’, IJEAT, vol. 9, no. 02, pp. 608–612, 2019.
  104. 104. D. R. Patil and M. Sharma, ‘Dynamic Resource Allocation and Memory Management Using Machine Learning for Cloud Environments’, International Journal of Advanced Trends in Computer Science and Engineering, vol. 9, no. 04, pp. 5921–5927, 2020.
  105. 105. B. Adgaonkar, D. R. Patil, and B. S. Borkar, ‘Availability-Aware Multi-Objective Cluster Allocation Optimization in Energy-Efficient Datacenters’, in 2022 2nd Asian Conference on Innovation in Technology (ASIANCON), 2022, pp. 1–6.
  106. 106. D. R. Patil, G. Mukesh, S. Manish, and B. Malay, ‘Memory and Resource Management for Mobile Platform in High Performance Computation Using Deep Learning’, ICIC Express Letters:Part B: Applications, vol. 13, no. 9, pp. 991–1000, 2022.
  107. 107. B. S. Borkar, D. R. Patil, A. V. Markad, and M. Sharma, ‘Real or Fake Identity Deception of Social Media Accounts using Recurrent Neural Network’, in 2022 International Conference on Fourth Industrial Revolution Based Technology and Practices (ICFIRTP), 2022, pp. 80–84.
  108. 108. D. R. Patil, B. Borkar, A. Markad, S. Kadlag, M. Kumbhkar, and A. Jamal, ‘Delay Tolerant and Energy Reduced Task Allocation in Internet of Things with Cloud Systems’, in 2022 International Interdisciplinary Humanitarian Conference for Sustainability (IIHC), 2022, pp. 1579–1583.
  109. 109. N. Fatima, "New homotopy perturbation method for solving nonlinear differential equations and fisher type equation," IEEE International Conference on Power, Control, Signals and Instrumentation Engineering, Chennai, India, 2017, pp. 1669-1673.
  110. 110. N. Fatima, S. Daniel, “Solution of Wave Equations and Heat Equations Using HPM” Applied Mathematics and Scientific Computing. Trends in Mathematics”, vol.2 pp. 367-374, Feb 2019.
  111. 111. N. Fatima, “Solution of Gas Dynamic and Wave Equations with VIM” Advances in Fluid Dynamics. Lecture Notes in Mechanical Engineering. Springer, Singapore, vol 1 pp. 81-91, July. 2021.
  112. 112. N. Fatima, "Homotopy Perturbation Method for Solving Boussinesq and Fishers Type Equations," 2016 Second International Conference on Computational Intelligence & Communication Technology (CICT), Ghaziabad, India, 2016, pp. 478-483.
  113. 113. M. Dhariwal, N. Fatima, “Homotopy Perturbation Method for Solving Mathematical Model of Novel Coronavirus Differential Equations” (June 15, 2020). Available at SSRN: or
  114. 114. N. Fatima, M. Dhariwal, “Solution of Nonlinear Coupled Burger and Linear Burgers Equation” Int. J. Eng. Technol, 7, 670-674.
  115. 115. Srinath Venkatesan, “Design an Intrusion Detection System based on Feature Selection Using ML Algorithms”, MSEA, vol. 72, no. 1, pp. 702–710, Feb. 2023
  116. 116. Srinath Venkatesan, “Identification Protocol Heterogeneous Systems in Cloud Computing”, MSEA, vol. 72, no. 1, pp. 615–621, Feb. 2023.
  117. 117. Cristian Laverde Albarracín, Srinath Venkatesan, Arnaldo Yana Torres, Patricio Yánez-Moretta, Juan Carlos Juarez Vargas, “Exploration on Cloud Computing Techniques and Its Energy Concern”, MSEA, vol. 72, no. 1, pp. 749–758, Feb. 2023.
  118. 118. Srinath Venkatesan, “Perspectives and Challenges of Artificial Intelligence Techniques in Commercial Social Networks”Volume 21, No 5 (2023).
  119. 119. Srinath Venkatesan, Zubaida Rehman, “The Power Of 5g Networks and Emerging Technology and Innovation: Overcoming Ongoing Century Challenges” Ion exchange and adsorption, Vol. 23 (1), 2023.
  120. 120. Srinath Venkatesan, “Challenges of Datafication: Theoretical, Training, And Communication Aspects of Artificial Intelligence” Ion exchange and adsorption. Volume 23, Issue 1, 2023.
  121. 121. Giovanny Haro-Sosa , Srinath Venkatesan, “Personified Health Care Transitions With Automated Doctor Appointment System: Logistics”, Journal of Pharmaceutical Negative Results, pp. 2832–2839, Feb. 2023
  122. 122. Srinath Venkatesan, Sandeep Bhatnagar, José Luis Tinajero León, "A Recommender System Based on Matrix Factorization Techniques Using Collaborative Filtering Algorithm", neuroquantology, vol. 21, no. 5, pp. 864-872, march 2023.
  123. 123. Srinath Venkatesan, "Utilization of Media Skills and Technology Use Among Students and Educators in The State of New York", Neuroquantology, Vol. 21, No 5, pp. 111-124, (2023).
  124. 124. Srinath Venkatesan, Sandeep Bhatnagar, Iván Mesias Hidalgo Cajo, Xavier Leopoldo Gracia Cervantes, "Efficient Public Key Cryptosystem for wireless Network", Neuroquantology, Vol. 21(5), pp. 600-606, (2023).
  125. 125. O. Alkarabsheh, A. Jaaffar, p. Wei Fong, D. Almaaitah and Z. Alkharabsheh, "The relationship between leadership style and turnover intention of nurses in the public hospitals of Jordan," Cogent Business & Management, Vols. 9, 2022, no. Issue 1, p. Page 1 of 19, 2022.
  126. 126. F. Yassine, T. Maaitah, D. Maaitah and J. Al-Gasawneh, "Impact Of Covid-19 On The University Education System In Jordan," Journal of Southwest Jiaotong University, vol. 57, no. 1, pp. 1-15, 2022.
  127. 127. D. AL-Maaitah, T. AL-Maaitah and O. alkharabsheh, "The impact of job satisfaction on the employees turnover intention at public universities (Northern Border University)," International Journal of Advanced and Applied Sciences, vol. 8, no. 5, pp. 53-58, 2021.
  128. 128. D. Al-maaitah, R. Alias and T. Al-maaitah, "The Impact of Human Resource Management Practices and Leader Member Exchange on Job Performance: A moderating Role of Job Satisfaction in Jordanian Public Universities," Indian Journal of Science and Technology, vol. 12, no. 11, p. 5, 2019.
  129. 129. D. Maaitah, R. Allias, A. Azmin and T. Maaitah, "Leader member exchange and job performance with job satisfaction as a moderator," National Academy of Managerial Staff of Culture and Arts Herald, vol. 1, no. 1, pp. 1176-1179, 2018.
  130. 130. D. Maaitah, R. Alias and T. Maaitah, "The Impact Of Human Resource Management Practices On Job Performance In (University Of Jordan)," national academy of managerial staff of culture and arts herald, vol. 1, no. 1, pp. 1180-1183, 2018.
  131. 131. T. AL-Maaitah, A. Osman, M. Suberi, D. AL-Maaitah and M. AL-Maaitah, "Factors Influencing the Adoption of Electronic Banking in Jordan," Australian Journal of Basic and Applied Sciences, vol. 9, no. 12, pp. 104-108, 2015.
  132. 132. D. Al-Maaitah, M. Abdul Mutalib, A. Zumrah and T. Al-Maaitah, "A Conceptual Approach of Human Resource Management Practices Towards Organisation Performance: An Evidence from the Private Universities in Jordan," International Journal of Economics, Commerce and Management, vol. 3, no. 8, pp. 426-434, 2015.
  133. 133. T. AL-Maaitah, A. Osman, M. Suberi, D. AL-Maaitah and F. AL-Dhmour, "Review study on the security of electronic payment systems," International Journal of Economics, Commerce and Management, vol. 3, no. 9, pp. 821-829, 2015.
  134. 134. D. AL-maaitah, T. AL-maaitah and A. Al-shourah, "Factors Affecting Human Resource Practices In A Sample Of Diversified," International Journal Of Research Science & Management, vol. 12, no. 2, pp. 23-28, 2015.
  135. 135. V. S. R. Kosuru and A. K. Venkitaraman, “Developing a Deep Q-Learning and Neural Network Framework for Trajectory Planning”, EJENG, vol. 7, no. 6, pp. 148–157, Dec. 2022.
  136. 136. K. Venkitaraman and V. S. R. Kosuru, “Hybrid Deep Learning Mechanism for Charging Control and Management of Electric Vehicles”, EJECE, vol. 7, no. 1, pp. 38–46, Jan. 2023.
  137. 137. Khan, S. (2021). Visual Data Analysis and Simulation Prediction for COVID-19 in Saudi Arabia Using SEIR Prediction Model. International Journal of Online Biomedical Engineering, 17(8).
  138. 138. Khan, S., & Alghulaiakh, H. (2020). ARIMA Model for Accurate Time Series Stocks Forecasting. International Journal of Advanced Computer Science Applications, 11(7), 524-528.
  139. 139. Khan, S., & Alqahtani, S. (2020). Big data application and its impact on education. International Journal of Emerging Technologies in Learning, 15(17), 36-46.
  140. 140. Khan, S., Fazil, M., Sejwal, V. K., Alshara, M. A., Alotaibi, R. M., Kamal, A., & Baig, A. R. (2022). BiCHAT: BiLSTM with deep CNN and hierarchical attention for hate speech detection. Journal of King Saud University-Computer Information Sciences, 34(7), 4335-4344.
  141. 141. Khan, S., Saravanan, V., Lakshmi, T. J., Deb, N., & Othman, N. A. (2022). Privacy Protection of Healthcare Data over Social Networks Using Machine Learning Algorithms. Computational Intelligence and Neuroscience, 2022(Article ID 9985933), 8 pages.
  142. 142. Khan, S., & AlSuwaidan, L. (2022). Agricultural monitoring system in video surveillance object detection using feature extraction and classification by deep learning techniques. Computers and Electrical Engineering, 102, 108201.
  143. 143. Khan, S. (2022). Business Intelligence Aspect for Emotions and Sentiments Analysis. Paper presented at the 2022 First International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT).
  144. 144. Aryal, A., Stricklin, I., Behzadirad, M., Branch, D. W., Siddiqui, A., & Busani, T. (2022). High-Quality Dry Etching of LiNbO3 Assisted by Proton Substitution through H2-Plasma Surface Treatment. Nanomaterials, 12(16), 2836.
  145. 145. Paldi, Robynne L., Arjun Aryal, Mahmoud Behzadirad, Tito Busani, Aleem Siddiqui, and Haiyan Wang. "Nanocomposite-seeded Single-Domain Growth of Lithium Niobate Thin Films for Photonic Applications." In 2021 Conference on Lasers and Electro-Optics (CLEO), pp. 1-2. IEEE, 2021.
  146. 146. Shifat, A. Z., Stricklin, I., Chityala, R. K., Aryal, A., Esteves, G., Siddiqui, A., & Busani, T. (2023). Vertical Etching of Scandium Aluminum Nitride Thin Films Using TMAH Solution. Nanomaterials, 13(2), 274.
  147. 147. R. Oak, M. Du, D. Yan, H. Takawale, and I. Amit, “Malware detection on highly imbalanced data through sequence modeling,” in Proceedings of the 12th ACM Workshop on Artificial Intelligence and Security - AISec’19, 2019.
  148. 148. Viktor, P., & Szeghegyi, Á. (2022). Safety of the Introduction of Self-driving Vehicles in a Logistics Environment. Periodica Polytechnica Transportation Engineering, 50(4), 387–399.
  149. 149. Viktor, P., & Reicher, R. (2020). Magyarországi leányvállalatok centralizált beszerzései. Logisztikai Trendek És Legjobb Gyakorlatok, 6(2), 35–44.
  150. 150. Viktor, P., Molnár, A., & Fodor, M. (2022). The Current State of Vocational Schools in Hungary and New Strategies in Teaching. Specialusis Ugdymas, 2(43), 3497–3515.
  151. 151. Albert, M., Patrik, V., Dániel, S., & Ágnes, C.-K. (2021). Frequency analysis of anomalous negative price fluctuations in stock market indices as a crisis forecasting tool. Macrotheme Review: A Multidisciplinary Journal Of Global Macro Trends, 10(1), 9–26.
  152. 152. Patrik, V. (2021). Conditions for the introduction of autonomous vehicles. Macrotheme Review: A Multidisciplinary Journal Of Global Macro Trends, 10(1), 77–85.
  153. 153. Patrik, V., Albert, M., Claudia, C., & Mónika, G.-F. (2021). Consumer habits of purchasing food products, grown in Hungary. Macrotheme Review: A Multidisciplinary Journal Of Global Macro Trends, 10(1), 27–39.
  154. 154. Dániel, S., & Patrik, V. (2021). The importance of project risk management in practice. Macrotheme Review: A Multidisciplinary Journal Of Global Macro Trends, 10(1), 68–76.
  155. 155. Mónika, F., & Patrik, V. (2022). IOT devices and 5G network security option from generation aspects. In IEEE 10th Jubilee International Conference on Computational Cybernetics and Cyber-Medical Systems ICCC 2022 (pp. 265–269).
  156. 156. Szeghegyi, Á., & Viktor, P. (2022). Impact of the Energy Crisis on Demand for Plug-in Hybrid Vehicles. In IEEE Joint 22nd International Symposium on Computational Intelligence And Informatics and 8th International Conference on Recent Achievements in Mechatronics, Automation, Computer Science and Robotics (CINTI-MACRo 2022) (pp. 215–219).
  157. 157. Patrik, V., Dániel, S., & Albert, M. (2021). Consumer habits and autonomous vehicles. In FIKUSZ 2021 XVI. International Conference Proceedings (pp. 73–81).
  158. 158. Haq, M. A., Ahmed, A., Khan, I., Gyani, J., Mohamed, A., Attia, E.-A., Mangan, P., & Pandi, D. (2022). Analysis of environmental factors using AI and ML methods. Scientific Reports, 12(1), 13267.
  159. 159. Haq, M. A., Ghosh, A., Rahaman, G., & Baral, P. (2019). Artificial neural network-based modeling of snow properties using field data and hyperspectral imagery. Natural Resource Modeling, 32(4).
  160. 160. Haq, M. A., & Baral, P. (2019). Study of permafrost distribution in Sikkim Himalayas using Sentinel-2 satellite images and logistic regression modelling. Geomorphology, 333, 123–136.
  161. 161. Haq, M. A., Alshehri, M., Rahaman, G., Ghosh, A., Baral, P., & Shekhar, C. (2021). Snow and glacial feature identification using Hyperion dataset and machine learning algorithms. Arabian Journal of Geosciences, 14(15).
  162. 162. Mangan, P., Pandi, D., Haq, M. A., Sinha, A., Nagarajan, R., Dasani, T., Keshta, I., & Alshehri, M. (2022). Analytic Hierarchy Process Based Land Suitability for Organic Farming in the Arid Region. Sustainability, 14(4542), 1–16.
  163. 163. Haq, M. A. (2021). DNNBoT: Deep Neural Network-Based Botnet Detection and Classification. Computers Materials and Continua, 71(1), 1769–1788.
  164. 164. Haq, M. A. (2022). CDLSTM: A novel model for climate change forecasting. Computers, Materials and Continua, 71(2), 2363–2381.
  165. 165. Haq, M. A. (2021). SMOTEDNN: A Novel Model for Air Pollution Forecasting and AQI Classification. Computers Materials and Continua, 71(1), 1403–1425.
  166. 166. Haq, M. A., Azam, M. F., & Vincent, C. (2021). Efficiency of artificial neural networks for glacier ice-thickness estimation: A case study in western Himalaya, India. Journal of Glaciology, 67(264), 671–684.
  167. 167. Haq, M. A. (2022). CNN Based Automated Weed Detection System Using UAV Imagery. Computer Systems Science and Engineering, 42(2), 837–849.
  168. 168. Amit Kumar Jain, “Overview of Serverless Architecture,” International Journal of Engineering Research & Technology, vol. 11, no. 09, p. 3, 2022.
  169. 169. Amit Kumar Jain, “Multi-Cloud Computing & Why do we need to Embrace it,” International Journal Of Engineering Research & Technology, vol. 11, no. 09, p. 1, 2022.
  170. 170. Amit Kumar Jain, “Hybrid Cloud Computing: A Perspective,” International Journal of Engineering Research & Technology, vol. 11, no. 10, p. 1, 2022.
  171. 171. H. Nayak, A, Kushwaha, P.C. Behera, N.C. Shahi, K.P.S. Kushwaha, A. Kumar and K.K. Mishra, “The pink oyster mushroom, Pleurotus djamor (Agaricomycetes): A potent antioxidant and hypoglycemic agent,” International Journal of Medicinal Mushrooms, vol. 23, no. 12, p. 29-36, 2021.
  172. 172. SS Priscila, M Hemalatha, “Improving the performance of entropy ensembles of neural networks (EENNS) on classification of heart disease prediction”, Int J Pure Appl Math 117 (7), 371-386, 2017.
  173. 173. S Silvia Priscila, M Hemalatha, “ Diagnosisof heart disease with particle bee-neural network” Biomedical Research, Special Issue, pp. S40-S46, 2018.
  174. 174. S Silvia Priscila, M Hemalatha, “ Heart Disease Prediction Using Integer-Coded Genetic Algorithm (ICGA) Based Particle Clonal Neural Network (ICGA-PCNN)”, Bonfring International Journal of Industrial Engineering and Management Science 8 (2), 15-19, 2018.
  175. 175. B Bisoyi, D Das, PS Subbarao, B Das, “An Evaluation on Green Manufacturing: It’s Technique, Significance and Rationality”, IOP Conference Series: Materials Science and Engineering, 653 (1), 012032, 2019.
  176. 176. PPS Subbarao, “Bank credit to infrastructure in India – Issues, Challenges and Strategies”, International Research Journal of Commerce & Behavioral Science, 4 (10) 6,2015.
  177. 177. PS Subbarao, “Participative Management in Post Liberalization-A Case study of Indian Jute Industry”, International Journal of Decision Making in Management, 2 (1), 55-62, 2013.
  178. 178. PS Subbarao, PS Rani, “Application of information Technology in Agriculture-An Indian Experience” European Journal of Business and Management 4 (8), 37-46, 2012.
  179. 179. PS Subbarao, PS Rani, “International Technology Transfer to India an Impedimenta & Impetuous,” Global Journal of Business Management, 5 (1), 1-19, 2011.
  180. 180. SS Pasumarti, “Accomplishment of Gandhian Globalization Is A Myth or Reality”, Journal of Advanced Research in Dynamical & Control Systems, 11 (6), 52-61, 2019.
  181. 181. SS Pasumarti, “CSR and Socio-Economic Development–A case study of selected PSU’s in the State of Odisha” Journal of Critical Reviews, 7 (13), 1407-1415, 2020.
  182. 182. Suman, R. S., Moccia, S., Chinnusamy, K., Singh, B., & Regin, R. (Eds.). (2023, February 10). Handbook of research on learning in language classrooms through ICT-based digital technology. Advances in Educational Technologies and Instructional Design. doi:10.4018/978-1-6684-6682-7
  183. 183. S. Tripathi and A. Al -Zubaidi, “A Study within Salalah’s Higher Education Institutions on Online Learning Motivation and Engagement Challenges during Covid-19,” FMDB Transactions on Sustainable Techno Learning., vol. 1, no. 1, pp. 1–10, 2023.
  184. 184. A. I. Zannah, S. Rachakonda, A. M. Abubakar, S. Devkota, and E. C. Nneka, “Control for Hydrogen Recovery in Pressuring Swing Adsorption System Modeling,” FMDB Transactions on Sustainable Energy Sequence, vol. 1, no. 1, pp. 1–10, 2023.
  185. 185. D. Saxena, S. Khandare and S. Chaudhary, “An Overview of ChatGPT: Impact on Academic Learning,” FMDB Transactions on Sustainable Techno Learning., vol. 1, no. 1, pp. 11–20, 2023.
  186. 186. A, V. V. ., T, S. ., S, S. N. ., & Rajest, D. S. S. . (2022). IoT-Based Automated Oxygen Pumping System for Acute Asthma Patients. European Journal of Life Safety and Stability (2660-9630), 19 (7), 8-34.
  187. 187. Regin, D. R., Rajest, D. S. S., T, S., G, J. A. C., & R, S. (2022). An Automated Conversation System Using Natural Language Processing (NLP) Chatbot in Python. Central Asian Journal Of Medical And Natural Sciences, 3(4), 314-336.
  188. 188. Rajest, S. S. ., Regin, R. ., T, S. ., G, J. A. C. ., & R, S. . (2022). Production of Blockchains as Well as their Implementation. Vital Annex : International Journal of Novel Research in Advanced Sciences, 1(2), 21–44.
  189. 189. T, S., Rajest, S. S., Regin, R., Christabel G, J. A., & R, S. (2022). Automation And Control Of Industrial Operations Using Android Mobile Devices Based On The Internet Of Things. Central Asian Journal of Mathematical Theory and Computer Sciences, 3(9), 1-33.
  190. 190. Jerusha Angelene Christabel G, Shynu T, S. Suman Rajest, R. Regin, & Steffi. R. (2022). The use of Internet of Things (Iot) Technology in the Context of “Smart Gardens” is Becoming Increasingly Popular. International Journal of Biological Engineering and Agriculture, 1(2), 1–13.
  191. 191. R. Steffi, G. Jerusha Angelene Christabel, T. Shynu, S. Suman Rajest, R. Regin (2022), “ A Method for the Administration of the Work Performed by Employees”, Journal of Advanced Research in Dynamical and Control Systems, Vol.14, no.1, pp. 7-23.
  192. 192. R. Regin, Steffi. R, Jerusha Angelene Christabel G, Shynu T, S. Suman Rajest (2022), “Internet of Things (IoT) System Using Interrelated Computing Devices in Billing System”, Journal of Advanced Research in Dynamical and Control Systems, Vol.14, no.1, pp. 24-40.
  193. 193. S. S. Rajest, R. Regin, S. T, J. A. C. G, and S. R, “Improving Infrastructure and Transportation Systems Using Internet of Things Based Smart City”, CAJOTAS, vol. 3, no. 9, pp. 125-141, Sep. 2022.
  194. 194. Regin, R., Rajest , S. S., T , S., G, J. A. C., & R , S. (2022). An Organization’s Strategy that is Backed by the Values and Visions of its Employees’ Families. Central Asian Journal of Innovations on Tourism Management and Finance, 3(9), 81-96.
  195. 195. Regin, R., Rajest, S. S., T, S., Christabel G, J. A. and R, S. (2022) “The Influence that the Advertising of Pharmaceuticals has on the Economy”, Central Asian Journal Of Social Sciences And History, 3(10), pp. 1-18.
  196. 196. Regin, R., Rajest, S. S., T, S., G, J. A. C., & R, S. (2022). Pharmaceutical Supply Chain Challenges and Inventory Management. Central Asian Journal of Innovations on Tourism Management and Finance, 3(10), 143-159.
  197. 197. R, S., Regin, R., Rajest, S. S., T, S. and G, J. A. C. (2022) “Rail Project’s Needed Project Management Approaches, Strategies, Methodologies, and Processes”, International Journal on Economics, Finance and Sustainable Development, 4(10), pp. 109-126.
  198. 198. Regin, R., Rajest, S. S., T, S., & R, S. (2022). Impact of Internet Banking on the Efficiency of Traditional Banks. Central Asian Journal of Innovations on Tourism Management and Finance, 3(11), 85-102.
  199. 199. Priscila, S. S., Rajest, S. S., T, S. and G, G. (2022) “An Improvised Virtual Queue Algorithm to Manipulate the Congestion in High-Speed Network”, Central Asian Journal of Medical and Natural Science, 3(6), pp. 343-360.